起订量:
旅游景区生活污水处理设备 景观水处理设备
延保会员
生产厂家潍坊远瑞环保科技有限公司坐落于美丽的风筝都山东省潍坊市。潍坊环保水处理行业始创于 1995 年,是中国新兴环保水处理生产基地。潍坊远瑞环保科技有限公司成立以来年来专业致力于一体化污水处理设备、气浮机、二氧化氯发生器、全自动加药设备、二氧化氯投加器等各种环保产品的研制、开发及销 售。我公司为广大的城镇污水处理、农村连片整治、学校、小区、高速服务区,医院、宾馆酒店、工厂、旅游 景点风景区等以及各地环保公司提供的配置和高质量的水处理成套设备,对每台设备都进行相当严格的测试,测试合格后才能出厂交付使用。潍坊远瑞环保科技有限公司长期秉承“励志改变人生,创造改变命运,德为道铭记于心,科技创新永无止境”的理念,我们本着开拓创新、人性化设计,重在产品质量与服务体系的建设,不以实现大利润为目的, 不易资产的大规模化为目标,不以低价为迎合市场而降低产品的质量,以客户需求作为我们发展的基础,以客户满意作为我们追求的目标,以合理的价位满足不同客户的需求。潍坊远瑞环保科技有限公司愿为中国环保事业贡献一份力量,让中国的水更清,天更蓝!
地埋A/O-人工湿地技术:是在常规生化处理基础上增设人工湿地系统进行深度处理。人工湿地系统是人为的在有一定长宽比和底面坡度的洼地上用土壤和填料如砾石等) 混合组成填料床,使污水在床体的填料缝隙中流动或在床体表面流动,并在床体表面种植性能好、成活率高、抗水性强、生长周期长、美观及具有经济价值的水生植物(如芦苇,蒲草和美人蕉等) ,形成一个“基质—微生物—植物”的复合生态系统,并利用这种复合生态系*的净化功能进行水质高效净化。适用于地势条件易于集水污水并能通过自流出水的且规模适中的村庄,处理规模20~200 t/天。工艺参数: 缺氧池停留时间不小于4 h,好氧池停留时间不小于6 h,污泥清理周期180 天,人工湿地水力负荷0. 5 ~1. 0 m3/(m2˙d) 。
地埋A/O-生态塘技术:
一种常规生化处理后增加生态塘处理工艺。生态塘亦称氧化塘或稳定塘,是一种利用天然净化能力对污水进行处理的构筑物的总称。其净化过程与自然水体的自净过程相似,通常是将土地进行适当的人工修整,建成池塘,并设置围堤和防渗层,依靠塘内生长的微生物来处理污水。生物塘是以太阳能为初始能量,通过在塘中种植水生植物,进行水产和水禽养殖,形成人工生态系统,在太阳能(日光辐射提供能量) 作为初始能量的推动下,通过生物塘中多条食物链的物质迁移、转化和能量的逐级传递、转化,将进入塘中污水的有机污染物进行降解和转化,后不仅去除了污染物,而且以水生植物和水产、水禽的形式作为资源回收,净化的污水也可作为再生资源予以回收再用,使污水处理与利用结合起来,实现污水处理资源化。该技术适用于拥有自然池塘或闲置沟渠,地势条件易于收集污水,并能通过自流出水的且规模适中的村庄,处理规模20~200t/天。工艺参数: 缺氧池停留时间不小于4 h,好氧池停留时间不小于6 h,生态塘停留时间不小于24 h,污泥清理周期180天。
在污水生物除磷实践中,好氧细菌不是对磷的生物摄/放起作用的菌种,兼性反硝化细菌也有着很强的生物摄/放磷现象。反硝化细菌的生物摄/放磷作用被荷兰代尔夫特工业大学(TUDelft)和日本东京大学(UT)研究人员合作研究确认,并冠名为反硝化除磷(denitrifyingdephosphatation)。在磷的生物摄/放过程中,反硝化除磷细菌以硝酸氮取代氧作为电子接受体,也就是说反硝化除磷细菌能将反硝化脱氮和生物除磷这两个原本认为彼此独立的作用合二为一。显然,在结合的除磷脱氮过程中,COD和氧的消耗量均能得到相应节省。比较传统的专性好氧磷细菌去除工艺,反硝化除磷细菌能分别节省约50%和30%的COD与氧的消耗量,相应减少剩余污泥量50%。在反硝化除磷过程中由于COD需要量的大为减少,过剩的COD因此能被分离,并使之甲烷化,从而避免COD单一的氧化稳定(至CO2)。归因于曝气能量的减少,以及过剩COD甲烷化后能量的产生,这种综合的能量节约终会导致释放到大气的CO2量明显减少。因此,具有反硝化除磷细菌富集的处理系统可以被视为可持续处理工艺。 传统上,两个已得到充分确认的生物途径,硝化(NH+4→NO3-)与反硝化(NO3→N2)被应用于污水处理的生物脱氮。这种传统生物脱氮途径从可持续角度看并不是佳的,因为充分地氧化氨氮到硝酸氮首先要消耗大量能源(因曝气);其次,还需要有足够碳源(COD)来还原硝酸氮到氮气。对这一传统脱氮途径的改进可借助于新近由荷兰TUDelft研发的一种中温亚硝化技术——SHARON来实现。在亚硝化/反硝化脱氮途径中,亚硝酸氮为仅有的中间过渡形态;这一途径无论对氧化(NH+4→NO2-)还是还原(NO2-→N2)均能起到小量化的作用,意味着O2和COD消耗量的双重节约。显然,亚硝化/反硝化脱氮途径可以成为一种可持续的脱氮技术。
生物膜技术:
生物膜法是分散生活污水处理主要应用的一种人工处理技术,包括厌氧和好氧生物膜两种。厌氧或好氧微生物附着在载体表面,形成生物膜来吸附、降解污水中的污染物,达到净化目的。这种方法设备简单、运行成本较低,处理效率高。反应器一般由填料、布水装置和排水系统三部分组成,采用的填料有无机类和有机类。目前,新型的生物膜反应器和固定化微生物技术也得到了广泛的研究。MBR(膜生物反应器)技术就是其中一种。
曝气生物滤池:
简称BAF,是集生物膜法与活性污泥法两者优点于一身的第3代生物滤池。BAF具有去除有机物、有害物质、脱氮、除磷的作用;占地面积小、基建投资少、能耗及运行成本低。
双膜式太阳能技术:
该种技术是运用生物膜和纤维膜的双模反应系统,运用鼓风机和抽水泵将阳光通过太阳能板进行转化,再经过系列运行,净化生活污水。适用于量充足的南方地区,污连续阴雨天则需要运用电进行运作。虽然这种技术较为新颖,但是在特定项目中已经有所使用,优势在于能够节约能源,并降低大量的运行费用。
可持续生物除磷脱氮工艺
以控制富营养化为目的的氮、磷脱除已成为各国主要的奋斗目标。无疑,应付日趋严格的排放标准,传统工艺会因上述弊端而雪上加霜。在此情形下,发展可持续污水处理工艺变得势在必行。所谓可持续污水处理工艺就是朝着小的COD氧化、的CO2释放、少的剩余污泥产量以及实现磷回收和处理水回用等方向努力。这就需要以较综合的方式来解决污水处理问题,即污水处理不应仅仅是满足单一的水质改善,同时也需要一并考虑污水及所含污染物的资源化和能源化问题,且所采用的技术必须以低能量消耗(避免出现污染转移现象)、少资源损耗为前提。
发展新颖的污水生物处理工艺依赖于在微生物学及生物化学方面的新发现或新认识。荷兰研究人员Mulder在10年前发现了厌氧氨(氮)氧化现象。与此同时,南非、荷兰、日本等国科学家对生物摄/放磷代谢机理重新认识后确定了反硝化除磷新途径。这两种新技术的研发与应用对发展可持续污水生物处理工艺具有划时代意义的推动作用。本文以厌氧氨氧化和反硝化除磷技术为蓝本,详细介绍它们的技术原理、工艺流程以及在欧洲的应用情况;在此基础之上提出一个以转换有机能源(甲烷)、回收磷化合物(鸟粪石)和回用处理水(非饮用目的)为目标的可持续城市污水生物除磷脱氮技术推荐工艺。