北京时代山峰科技有限公司

环保在线免费3

收藏

红外线热像仪和红外线热像技术的概述

时间:2010-01-08      阅读:3498

红外线热像仪和红外线热像技术的发展
       1800
年英国物理学家F. W.赫胥尔发现了红外线,红外线是一种电磁波,它在电磁波连续频谱中的位置是处于无线电波与可见光之间的区域。红外线辐射是自然界存在的一种的电磁波辐射,它是基于任何物体在常规环境下都会产生自身的分子和原子无规则的运动,并不停地辐射出热红外能量,分子和原子的运动愈剧烈,辐射的能量愈大,反之,辐射的能量愈小。温度在零度以上的物体,都会因自身的分子运动而辐射出红外线。

   的普朗克定律表明温度、波长和能量之间存在一定的关系,红外总能量随温度的增加而迅速增加;峰值波长随温度的增加向短波移动。根据斯蒂芬·玻耳兹曼定律,当温度变化时,红外总能量与温度的四次方成正比,当温度有较小的变化时,会引起总能量的很大变化。
   红外线热像仪和红外线热像技术的原理
     红外线热像是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外线热像图,这种热像图与物体表面的热分布场相对应。通俗地讲红外线热像仪就是将物体发出的不可见红外能量转变为可见的热图像。热图像的上面的不同颜色代表被测物体的不同温度。
   红外线热像仪和红外线热像技术的应用
      红外线热像
zui早是因为军事目的而得以开发,近年来迅速向民用工业领域扩展。自二十世纪70年代,欧美一些发达国家先后开始使用红外线热像仪在各个领域进行探索。红外线热像仪也经过几十年的发展,已经发展成非常轻便的现场测试设备。由于测试往往产生的温度场差异不大和现场环境复杂等因素,的热像仪必须具备320*240像素、一般的热像仪必须具备160*120像素,分辨率小于0.1℃、空间分辨率小、具备红外图像和可见光图像合成功能等。由于红外热成像技术能够进行非接触式的、高分辨率的温度成像,能够生成高质量的图像,可提供测量目标的众多信息,弥补了人类肉眼的不足,因此已经在电力系统、土木工程、汽车、冶金、石化、医疗等诸多行业得到广泛应用,未来的发展前景更不可*。
   下面对红外线热像仪的具体应用情况向您作一个简单介绍:
   输电设备:接头、绝缘子、夹板、跳线、高压线、压接套管、瓷瓶引线……变电系统:互感器、隔离开关、空气断线器、油断路器、少油量断路器、避雷器、电容器、电抗器、变压器、总线、套管、整流器、绝缘子、线夹、阻波器……配电系统:配电盘、开关箱、变压器、断电器、接触器、保险丝、电缆…… 电厂:发电机碳刷绕组装备、发电机、变压器、油枕、发电机馈电线、电压调节器、发电机马达控制中心电盘、UPS……建设系统:检查外墙空鼓、剥落、屋面渗漏、管道、热桥、建筑节能研究、竣工验收等;公路桥梁:可用于快速扫描公路裂纹、桥梁开裂、渗漏检查、沥青摊铺等;冶金系统:用于大型高炉料面测定、热风炉的破损诊断和检修等;高炉、钢材成型加工和热处理:焊接、铸件、模具、炼钢炉、转炉、鱼雷车、炉壁、金属热处里(退火、回火、淬火)、冷/热轧钢板、钢卷线材等温度量测监控……石化系统:可用于保温隔热材料的破损诊断、加热炉管的温度分布测定等;转动机械设备:马达、马达碳刷、轴承、联轴器、泵浦、汽机叶片、齿轮箱、驱动齿轮、驱动皮带、联轴器、射出成型机、柴油机、空压机……机电系统:可用于新产品开发试验研究、大型机电设备温度分布监测等;锅炉反应炉加热炉:炉壁、炉管、烟囱、热交换器、水泥旋窑……产品流程设备:安全阀、气体/产品管路(保温、保冷)、热交换器、冷却塔、桶槽、球槽、储存槽、空气干燥机、烘干机、冷冻器……电子产品:PC板热分析、电子组件热传导测试、壳散热测试、电路设计、环境评估……消防安保系统:可用于消防科研、火灾救人、安保、走私监控等;自然科学:采光、温室效应、沙尘暴、植物、采矿等;医疗:肿瘤、甲状腺、糖尿病、非典、禽流感等;其它:玻璃、军事、塑料、造纸、纺织、包装、排污、电影广告策划……
   怎样选择合适的红外线热像
   1.什么样的像素满足您的要求?
   320*240=76,800?
   在12米处测量的zui小尺寸是1*1cm
   160*120=19,200?
   在12米处测量的zui小尺寸是2*2cm
   TH7700红外线热像仪 低端低分辨率红外线热像仪
   320*240=76800个像素160*120=19,200个像素
 
  2、是否需要定量检测?
   红外线热像仪有两种用途:
   1、热成像   2、测温
   评价红外测温能力叫做MFOV,主要有2种:一种是MFOV为1,另外一种MFOV为3*3。
 
  MFOV为1时,目标*覆盖了热像仪的像素,像素接受的辐射只来自目标,因此能准确测量目标温度。而MFOV为9时,像素接收的辐射不只来自目标,而且吸收目标旁边的和背后的辐射,就不能测得这么小目标的准确温度。
   然而这只是测量的极限,根据当前的大部分FPA探测器技术,目标在探测器上zui少要有 3 x 3个像素才能确保准确测量,这要求检测时尽量靠近目标或选用望远镜头.如果目标成像小于3x3个像素,则热像仪显示的温度读数是目标的温度值与也成像在这3x3个像素的目标周围物体(环境)温度的平均值。
   3、高空间分辨率的优势
   高空间分辨率能够得出准确的温度,低空间分辨率读出的温度只是发热点周围的平均温度。在定量化检测时候,温度的正确与否非常重要!
   4、稳定性重复性对你是否重要?
   决定红外线热像仪的因素主要有3个方面:
   探测器、光学器件、电气原器件,军事级探测器的主要优势在哪里?
   a、主要有两种探测器。氧化钒晶体和多晶硅。氧化钒晶体探测器的主要优势:
   b、此探测器主要的优势是测温视域MFOV(MeasurementField of View)为1,温度测量是到1个像素点。Amorphous Silicon(多晶体硅)传感器,MFOV为9,即每点的温度是基于3×3=9个像素点平均而获得。
   c、温度稳定性好。
   d、使用寿命长
   e、适合于远距离测试
   5、是否在意报告处理的烦琐?
   如果红外图像和可见光图像组合显示就减少了大量工作,同时报告自动生成也会大大减少操作时间。
   6、是否需要延长曝光时间?延长曝光时间——专业照相的必然选择
   ∑2、∑4、∑8、∑16等功能,特别在检测北立面或者阳光照不到的地方很有优势。使用了∑功能,增加了曝光时间,图像更清晰,更容易发现缺陷部位。
 
  7、是否需要强大的售后?
   a、是否需要现场测试指导培训?
   b、专业的培训:   LEVEL1,   LEVEL2,   LEVEL3认证课程培训。
   正确使用红外线热像仪的方法和技巧
   1)调整焦距    2)选择正确的测温范围
   3)了解zui大测量距离  
  4)仅仅要求生成清晰红外热图像,还是同时要求测温?
   5)工作背景单一   6)保证测量过程中仪器平稳
   1)调整焦距
   您可以在红外图像存储后对图像曲线进行调整,但是您无法在图像存储后改变焦距,也无法消除其他杂乱的热反射。保证*时间操作正确性将避免现场的操作失误。仔细调整焦距!如果目标上方或周围背景的过热或过冷的反射影响到目标测量的性时,试着调整焦距或者测量方位,以减少或者消除反射影响。(FoRD的意思是:Focus焦距,Range范围,Distance距离)
   2)选择正确的测温范围
   您是否了解现场被测目标的测温范围?为了得到正确的温度读数,请务必设置正确的测温范围。当观察目标时,对仪器的温度跨度进行微调将得到*的图像质量。这也将同时会影响到温度曲线的质量和测温精度。
   3)了解zui大的测量距离
   当您测量目标温度时,请务必了解能够得到测温读数的zui大测量距离。对于非制冷微热量型焦平面探测器,要想准确地分辨目标,通过热像仪光学系统的目标图像必须占到9个像素,或者更多。如果仪器距离目标过远,目标将会很小,测温结果将无法正确反映目标物体的真实温度,因为红外线热像此时测量的温度平均了目标物体以及周围环境的温度。为了得到zui的测量读数,请将目标物体尽量充满仪器的视场。显示足够的景物,才能够分辨出目标。与目标的距离不要小于热像仪光学系统的zui小焦距,否则不能聚焦成清晰的图像。
   4)仅仅要求生成清晰红外热图像,还是同时要求测温
   这之间有什么区别吗?一条量化的温度曲线可用来测量现场的温度情况,也可以用来编辑显著的温升情况。清晰的红外图像同样十分重要。但是如果在工作过程中,需要进行温度测量,并要求对目标温度进行比较和趋势分析,便需要记录所有影响测温的目标和环境温度情况,例如发射率,环境温度,风速及风向,湿度,热反射源等等。
   5)工作背景单一
   例如,天气寒冷的时候,在户外进行检测工作时,你将会发现大多数目标都是接近于环境温度的。当在户外工作时,请务必考虑太阳反射和吸收对图像和测温的影响。因此,有些老型号的红外线热像仪只能在晚上进行测量工作,以避免太阳反射带来的影响。
   6)保证测量过程中仪器平稳
   现在所有的长波红外线热像都可以达到60Hz帧频速率,因此在拍摄图像过程中,由于仪器移动可能会引起图像模糊。为了达到的效果,在冻结和记录图像的时候,应尽可能保证仪器平稳。当按下存储按钮时,应尽量保证轻缓和平滑。即使轻微的仪器晃动,也可能会导致图像不清晰。推荐在您胳膊下用支撑物来稳固,或将仪器放置在物体表面,或使用三脚架,尽量保持稳定。
上一篇: 金相试样制做工艺流程 下一篇: 汽包中径管管座角焊缝超声波探伤方法简析
提示

请选择您要拨打的电话: