光催化氧化原理及应用
时间:2020-04-01 阅读:3930
半导体材料在紫外及可见光照射下,将光能转化为化学能,并促进有机物的合成与分解,这一过程称为光催化。当光能等于或超过半导体材料的带隙能量时,电子从价带(VB)激发到导带(CB)形成光生载流子(电子-空穴对)。在缺乏合适的电子或空穴捕获剂时,吸收的光能因为载流子复合而以热的形式耗散。价带空穴是强氧化剂,而导带电子是强还原剂。大多数有机光降解是直接或间接利用了空穴的强氧化能力。
常见的金属氧化物或硫化物光催化剂有TiO,、ZnO、WO3、Fe2O3 、ZnS、CdS和PbS等。其中,CdS的禁带宽度较小,与太阳光谱中的近紫外光段有较好的匹配性,可以很好地利用自然光源,但容易发生光腐蚀,使用寿命有限。TiO,具有催化能力强、化学稳定性好、无毒、价格低等优点,是目前研究和应用广泛的光催化剂。为提高金属氧化物或硫化物光催化剂的催化性能,可对其进行修饰改性。
光催化在环保方面的应用包括以下两点:
1)有机污染物的处理:光催化反应能分解多种环保上关注的有机物,还可消毒、脱色等。值得一提的是,光催化能将许多物质降解得十分*,终产物除了CO 和H2O外,初始污染物中含有的卤素、硫、磷和氮等分别被转化为X一、SO42- 、PO43- 、NO3-等无机盐离子,大大减轻甚至*消除了危害性。
2)无机污染物的处理:光催化能够解决汞、铬、铅等重金属离子的污染问题。刘森等 以ZnO/TiO2为催化剂,以日光为光源,利用ZnO和TiO2 的协同光催化作用对电镀含铬废水进行处理,使cr6离子还原为Cr3 离子,再以氢氧化物形式除去后者,从而达到治理的目的。光催化过程同样能够处理其他污染性金属。光催化还可降解剧毒污染物。另外SO42-、NO3-等有害气体均可吸附于光催化剂表面,并在光的作用下转化。