耐高温YJGGFPB-6KV电缆-高压扁电缆
耐高温YJGGFPB-6KV电缆-高压扁电缆

耐高温YJGGFPB-6KV电缆-高压扁电缆

参考价: 订货量:
59 1

具体成交价以合同协议为准
2015-07-06 11:01:07
763
产品属性
关闭
安徽亨利仪表电缆有限公司

安徽亨利仪表电缆有限公司

中级会员12
收藏

组合推荐相似产品

产品简介

耐高温YJGGFPB-6KV电缆-高压扁电缆ZR-YJGCFPB NH-YJGCFPB YJGCFPB-6KV YJGCFPB-10KV YJGCFPB-6/10KV YJGCFBP ZR-YJGCFBP NH-YJGCFBP

详细介绍

耐高温YJGGFPB-6KV电缆-高压扁电缆控制电缆同一品种采用规定的不同导体结构时,第1种导体用(A)表示(省略),第2种导体用(B)表示,在规格后标明。 5.3.3 控制电缆中的绿/黄双色绝缘线芯应与其他线芯分别表示。  举例: (1)铜芯硅橡胶绝缘硅橡胶护套控制电缆,固定敷设用,额定电压450/750V、19芯、1.5 mm2、有绿/黄双色绝缘线芯,表示为:  第1类导体结构者:KGG-450/750V 18×1.5+1×1.5 TICW/05-2009  第2类导体结构者:KGG-450/750V 18×1.5(B)+1×1.5(B) TICW/05-2009  (2)铜芯硅橡胶绝缘硅橡胶护套铜带屏蔽控制电缆,固定敷设用,第1类导体结构,额定电压0.6/1kV、19芯、1.5mm2、铜带屏蔽,无绿/黄双色绝缘线芯,表示为:  KGGP2-0.6/1kV 19×1.5 TICW/05-2009  (3)硅橡胶绝缘硅橡胶护套编织屏蔽控制软电缆,移动敷设用,额定电压450/750V、19芯、1.5mm2、编织屏蔽,无绿/黄双色绝缘线芯,表示为:  KGGRP-450/750V 19×1.5 TICW/05-2009 (4)铜芯硅橡胶绝缘硅橡胶内套铜带屏蔽钢带铠装硅橡胶护套控制电缆,固定敷设用,第1类导体结构,额定电压450/750V、19芯、1.5mm2、钢带铠装,无绿/黄双色绝缘线芯,表示为:  KGGP2-2G-450/750V 19×1.5 TICW/05-2009   5.4 电缆燃烧特性代号和表示方法及燃烧特性要求符合GB/T 19666的规定。
硅橡胶兼有无机和有机性质的高分性体绝缘材料它的分子主链是硅原子和氧原子交替组成硅氧键能达)比一般橡胶结合键能要大得多所以硅橡胶具有很高的热稳定性。又因它的分子侧链上引入了极少量的不饱和的乙烯基和有机基团如引入了这种结构的硅橡胶具有优良的耐热老化和耐候老化对臭氧和紫外线的作用也十分稳定且具有优异的电绝缘性能其体积电阻率高达击穿电压也高达介电损耗角正切介电常数为并在高压下电晕放电及电弧具有优良和阻尼作用。阻 燃高温硫化硅橡胶电缆线 胶料它不仅具有硅橡胶的优异性能而且还具有阻燃自熄的特性是、航天、核工业、光纤、电讯、家用电器、汽车、建材、地下建筑、井下矿山、电线电缆等领域不可 缺少的安全材料。所以用硅橡胶生产的电缆线 尤其是用阻燃高 温硫化硅橡胶电缆线 胶料生产的电缆线 可以在高温耐高温YJGGFPB-6KV电缆-高压扁电缆


040阻燃胶的阻燃机理高聚物的燃烧过程是一个剧烈的热氧化过程阻止高聚物的燃烧关键是阻止高聚物的裂解若在这一步采用物理或化学方法控制高聚物的裂解就能阻止高聚物的燃烧和蔓延通过降温、隔热和隔 绝空气是99%基本的方法另外终止燃烧过程中过氧化物分解生成性质活泼的羟基 更是至关重要的。因为"实验方法系统研究了一些聚合物及其阻燃体系的LOI随温度变化的规律,提出了新的表片参数(或新温度指数),它们反映了聚合物体系阻燃性能抵抗温度上升的能力。文中同时结合TGA、CONE等表征手段探讨了影响不同聚合物体系LOI变化规律的主要因素及内在机制:(1)对于纯聚合物体系,LOI变化规律及温度指数与体系在高温时时的成炭量无直接关系,更多地取决于体系本身化学与物理的热稳一性。(2)阻燃机理也是影响LOI随温度变化规律的重要因素。卤锑协同体系由于特殊的气相协同阻燃作用而具有很高的温度指数。APP/PER构成的典型的无卤膨胀阻燃(IFR)体系由于热稳定性低而具有较低的温度指数。研究同时表明膨胀阻燃促进剂ZEO通常对该体系温度指数的提高有较明显的 作用
本文采用熔铸法制备了不同成分的镁合金用扫描电镜、光学显微镜、X射线衍射仪等现代分析手段研究了镁合金显微组织和强化机制以及镁合金的高温氧化行为。    氧化膜经过XRD物相分析和XEM能谱分析得知主要由Ce2O3、Al2O3和MgO组成。表层由MgO组成Ce2O3与Al2O3一起填充MgO孔隙形成了中间层氧化膜中间层致密度足以阻挡氧的进入。在AZ91D镁合金中加入1Ce后其燃点提高约60℃。因此镁合金的阻燃性能得到提高。    将合金元素Sb加入到稀土阻燃镁合金中Sb与Ce优成金属间化合物CeSb同时减少了大量长棒状A14Ce相生成的可能性并且形成的颗粒状CeSb具有形核作用从而细化晶粒。将合金元素Y加入到稀土阻燃镁合金中, Y优先与Al结合形成热稳定相Al2Y它作为α-Mg枝晶Mg17Al12相的形核剂促成晶核的形成从而细化了合金的铸态组织。    实验表明将合金元素Sb加入到稀土阻燃镁合金中由于CeSb相的出现其燃点又有所降低
金属材料的韧性断裂是塑性加工过程中常见的失效形式和影响热加工性的重要因素历来都是塑性加工领域的研究热点。随着有限元模拟技术和损伤耐高温YJGGFPB-6KV电缆-高压扁电缆力学的不断发展如何建立合适的热变形开裂准则预测和避免缺陷的产生已成为缺陷仿真预测迫切需要解决的难题。本文以热变形极易开裂的Ti40阻燃合金为研究对象以各种室温下适用的开裂准则为基础引入Zener-Hollomon因子对Ti40合YVFB、YFFB、YVFGB、YGGB、YGCB、YFGB、KFGB、JFGB、YFVFB、KVFB、KVFGB、YVFRB、YVFGRB、YFGRB、KFGRB、JFGRB、YGGRB、YGCRB、YFVFRB、KVFRB、KVFGRB、YVFPB、YVFGPB、YFGPB、KFGPB、JFGPB、YGGPB、YGCPB、YFVFPB、KVFPB、KVFGPB、YFFB、YFFRPB、YVFRPB、YVFGRPB、YFGRPB、KFGRPB、JFGRPB、YGGRPB、YGCRPB、YFVFRPB、KVFRPB、KVFGRB、YF46GB、KF46GB、JF46GB、YF46GRB、KF46GRB、JF46GRB、ZR-YVFB、ZR-YVFGB、ZR-YFGB、ZR-KFGB、ZR-JFGB、ZR-YGGB、ZR-YGCB、ZR-YFVFB、ZR-KVFB,ZR-KVFGB、ZR-YVFRB、ZR-YVFGRB、ZR-YFGRB、ZR-KFGRB、ZR-JFGRB、ZR-YGGRB、ZR-YGCRB、ZR-YFVFRB、ZR-KVFRB、ZR-KVFGRB、ZR-YVFPB、ZR-YVFGPB、ZR-YFGPB、ZR-KFGPB、ZR-JFGPB、ZR-YGGPB、ZR-YGCPB、ZR-YFVFPB、ZR-KVFPB金的变形机理及开裂行为进行了系统的研究。主要研究内容和结果如下    研究了Ti40合金高温变形过程中变形温度和应变速率对流动应力的影响规律揭示了流动软化和不连续屈服现象的影响因素和机理发现不连续屈服现象与大量可动位错从晶界突然增殖有关。    揭示了Ti40合金的高温变形机理。发现变形温度低于950℃以动态回复为主高于950℃发生动态再结晶。动态再结晶的形貌随应变速率的变化而变化应变速率较高时(>1s1s)动态再结晶晶粒呈项链状沿原始β晶界分布沿晶界析出的TiSi颗粒是再结晶晶粒的核心应变速率较低时()发生了锯齿状的连续再结晶亚晶形核是其形核的主要机制。    研究了Ti40合金的开裂机理。发现低温、高应变速率下变形以45°剪切开裂为主温度较高时以平行于压缩轴方向的纵裂和豆腐渣式开裂为主。VO挥发导致接近表面的晶界产生空洞是合金热变形开裂的诱因。    揭示了Ti40阻燃合金热变形开裂的临界变形量与变形温度和应变速率的关系。结果表明变形温度越高应变速率越低材料的临界变形量越大。发现变形温度和应变速率的综合作用可用单变量Zener-Hollomon因子来表示且开裂的临界变形量与lnZ呈线性关系从而大大减少试验次数。    

上一篇:美标电缆的选型从哪些关键点入手! 下一篇:西门子编程电缆的作用及特点介绍,来了解下吧
热线电话 在线询价
提示

请选择您要拨打的电话:

温馨提示

该企业已关闭在线交流功能