山东千里环保工程有限公司

环保在线免费8

收藏

厌氧化工艺如何处理污水

时间:2017-12-23      阅读:679

 引言

  随着科技的迅速发展,工业化和城市化程度的不断提高,水体富营养化的问题日益严重,使得水资源更加紧张.而氮是引起水体富营养化的主要因素.所以越来越多的国家和地区制定了氮排放标准.因此,研究开发经济、的脱氮技术已成为控制工程领域的研究重点.

  生物处理法作为19 世纪末废水处理新型技术,与物化处理法相比具有处理费用低,不会对环境造成二次污染等优点.因此,生物处理法至今已成为世界各国污水二、三级处理的主要手段.*氮元素可在相应微生物的作用下转化成各种氧

化态和化学形式(目前已知的生物氮循环途径如 图 1所示),因此在污水生物脱氮处理中衍生了大量组合工艺.而厌氧氨氧化过程是目前zui捷径的生物脱氮过程,因此被誉为前景的污水脱氮工艺.为了更好的将厌氧氨氧化工艺应用到实际规模中,本文着重对

厌氧氨氧化菌的发现及其与污水处理中常见细菌的协同与竞争关系进行了详细的综述.旨在为厌氧氨氧化工艺在污水生物处理中的应用提供理论依据,并为今后厌氧氨氧化工艺的研究方向提出一些意见.

  图 1 氮循环示意图

  2 厌氧氨氧化概述

  早在1976年,Broda预言在自然界中存在一种以NO-2或NO-3作为电子受体把NH+4氧化成N2的化能自养型细菌.直到1995年,Mulder等处理酵母废水的反硝化流化床反应器内发现了NH+4消失的现象,从而证实了厌氧氨氧化反应的存在.

  厌氧氨氧化(Anaerobic ammonium oxidation,Anammox)是在缺氧条件下以亚硝酸盐(NO-2)为电子受体将氨(NH+4)转化成氮气(N2),同时伴随着以亚硝酸盐为电子供体固定CO2并产生硝酸盐(NO-3)的生物过程.执行该过程的微生物称之为厌氧氨氧化菌(Anaerobic ammonium oxidation bacteria,AAOB),其化学计量学方程式如下:

  1NH+4+1.32NO-2+0.066HCO-3+0.13H+→ 1.02N2+0.26NO-3+0.066CH2O0.5N0.15+2.03H2O

  由于氨氧化细菌(Ammonium oxidation bacteria,AOB)可将氨氧化成亚硝酸盐,为AAOB提供基质,所以目前对厌氧氨氧化工艺的应用通常与短程

硝化(亚硝化)在一起. 图 2为亚硝化-厌氧氨氧化工艺与传统的硝化-反硝化工艺的对比,通过对比可知亚硝化-厌氧氨氧化工艺具有如下优点:

  图 2 硝化-反硝化工艺与亚硝化-厌氧氨氧化工艺的比较

  ①厌氧氨氧化在缺氧条件下进行,无需氧气的供应,可节省62.5%的能源消耗.

  ②厌氧氨氧化以无机碳(CO2或HCO-3)为碳源,无需投加有机碳,大大节省了碳源.

  ③亚硝化-厌氧氨氧化所产生的CO2与普通的硝化-反硝化系统相比减少90%.

  ④AAOB生长缓慢、产率低,因此工艺剩余污泥量少,污泥处置费用低.

  ⑤厌氧氨氧化氮去除率及氮去除负荷较高,从而能够减少工艺占地面积,降低工艺基建成本.

  AAOB是一群分支很深的浮霉状菌.AAOB生长缓慢,在30~40℃条件下,其倍增时间为10~14 d,细胞产率为0.11 g(VSS)/g(NH+4),如果对培养条件进行优化,其倍增时间可缩短至4.8 d,甚至1.8 d.如表 1所示为目前已发现的5属17种Anammox菌.

相关研究表明,AAOB为地球氮循环做出了巨大贡献,目前已在自然环境和人工环境中发现了大量AAOB的存在.其中厌氧的自然生态系统包括:海洋沉积物和海洋水体、淡水沉积物和淡水水体、红树林地区(以及陆地生态系统等.而在人工生态系统中包括:污水处理

厂、海洋循环水产养殖系统、垃圾渗滤液处理系统.此外,人们以各种环境中发现的AAOB作为基础,将其引入污水处理系统,循序渐进地对AAOB进行驯化培养以处理各类废水,包括实验室规模、中试规模及实际规模的污泥消化液、垃圾渗滤液、焦化废水、味精废水、养猪废水(以及制药废水等.

上一篇:一体化污水处理哪家好? 下一篇:活性污泥法在污水处理中污泥的作用
提示

请选择您要拨打的电话: