10m3/d污水处理设备
10m3/d污水处理设备
10m3/d污水处理设备
10m3/d污水处理设备
10m3/d污水处理设备

10m3/d污水处理设备

参考价: 面议

具体成交价以合同协议为准
2019-01-24 16:42:21
316
属性:
出水管口径:110mm;处理量:0.5m³/h;额定电压:220v;额定功率:0.95kw;进水管口径:50mm;空气量:不等m³/min;流量计规格:1m³/h;
>
产品属性
出水管口径
110mm
处理量
0.5m³/h
额定电压
220v
额定功率
0.95kw
进水管口径
50mm
空气量
不等m³/min
流量计规格
1m³/h
关闭
潍坊鲁盛水处理设备有限公司

潍坊鲁盛水处理设备有限公司

免费会员
收藏

组合推荐相似产品

产品简介

10m3/d污水处理设备臭氧具有*的氧化性,对许多有机物或官能团发生反应,有效地改善水质。臭氧能氧化分解水中各种杂质所造成的色、嗅,其脱色效果比活性炭好;还能降低出水浊度,起到良好的絮凝作用,提高过滤滤速或者延长过滤周期。目前,由于国内的臭氧发生技术和工艺比较落后,所以运行费用过高,推广有难度。

详细介绍

10m3/d污水处理设备

10m3/d污水处理设备生产厂家:潍坊鲁盛水处理设备有限公司。

公司销售范围:全国,送货到场、安装。

处理过的污水种类涵盖:生活污水、医疗污水、屠宰污水、餐饮污水、洗涤污水、养殖污水、清洗污水及类似的工业污水。

找到我们不妨致电我们,我们可为您报价、做方案、出图纸、技术指导等服务。

 氧化沟技术发展现状
氧化沟技术在我国发展很快,是当前污水处理技术的热点之一。近年来国内建设的氧化沟数量在不断增加,其处理规模和处理对象也在不断扩大。氧化沟系统的主要优点:可以不设初沉池,二沉池可与氧化沟合建,省去污泥回流装置,对水质变化的适应性强,泥龄长,可达到较好的脱氮效果,污泥产率低等等。近年来,随着污水处理行业脱氮除磷要求的提高,氧化沟系统在除磷方面的欠缺经常被人们提出,因此探讨氧化沟系统除磷效率的提高途径就很有意义。现针对氧化沟系统除磷的问题进行了较深入地分析研究,提出了一些提高氧化沟系统除磷效果的途径,以对相关的研究和生产运行有所帮助。


氧化沟系统中除磷效果的影响因素
影响氧化沟系统除磷过程的因素主要有三类:环境因素、设计参数、水质条件。环境因素包括:DO、温度、pH 值等等。设计参数包括:泥龄、停留时间、剩余污泥处理方法等等。水质条件是近年来针对除磷效果的众多研究的中心话题,主要包括:基质的可获得性、进水水质特性、VFA 产生量、硝态氮的浓度。
DO的影响
DO 对除磷效率的影响主要体现在磷吸收区。当好氧区的DO 保持在1. 5 mg/ L~3. 0 mg/ L 之间时,除磷效果一般可以保证;当DO 小于1. 5 mg/ L 时,除磷率会降低,污泥沉降也变差;但如果DO 过高,则会导致水流到达厌氧区时DO 增加,影响磷的释放,同时由于DO 过高会降低反硝化效果,使得NO3- 浓度居高不下,也会影响厌氧区磷的释放 。
pH值
研究表明,pH 值为8. 0~8. 5 时, TP 去除率可以达到90 %以上;当pH 值为6. 5~8. 0 时,TP 去除率差别不大;当pH 值低于6. 5 时,TP 去除率会急剧下降。


泥龄
泥龄越长,活性生物量越低,除磷能力也相应降低。众多的研究表明:泥龄越长,单位BOD 的除磷量就越少。为达到的除磷率,除磷设计的泥龄值不应超过总体处理所需要的值。当其他处理所需的泥龄值很大时,只能通过别的途径来弥补泥龄的不良影响,如加大BOD/ TP 值。
停留时间
研究证明,厌氧区的停留时间会影响VFA 的产生以及贮磷菌对VFA 的吸收。一般地,厌氧区的停留时间越长,除磷率越高。厌氧停留时间从1. 1 h 增至2. 6 h ,TP 去除率会从59 %增至71 %。但是,过长的厌氧停留时间并没有好处,时间过长可能导致VFA 吸收的磷没有释放。这就有可能导致碳源贮存物量不足,不能在好氧区产生足够的能量来吸收所有释放的磷。在好氧区溶解磷的生物吸收也需要足够的停留时间,一般为1 h~2 h。
基质的可获得性
出水磷浓度的高低主要取决于系统中除磷细菌所需要的发酵基质的可获得量与必须去除的磷量的比值。研究表明:VFAs 是生物除磷的重要基质。污水的可生物降解COD 可以划分为溶解性可快速生物降解COD 和颗粒性慢速生物降解COD两类。主流生物除磷系统产生的VFAs 主要来自溶解性快速降解BOD5 ,也即磷的去除量与快速降解BOD5 成正比。

膜生物反应器(Membranebioreactor,MBR)工艺在城市污水处理和回用工程中的可行性和高效性已经得到了广泛的验证,并在近些年在中国呈现快速增长的趋势。使用具有微滤/超滤特性的膜分离单元,代替传统活性污泥工艺中的二沉池,在高效地实现泥水分离的同时,提升了生化处理系统的污泥浓度,进而使得MBR在占地面积、剩余污泥产量上体现出明显的优势。
然而,由于膜污染的发生和积累,严重影响了膜分离系统*运行的稳定性。因此在工程上,为控制膜污染的发展,通常需要借助膜分离系统(膜池)内的大量曝气产生足够的冲刷,减缓膜污染物在膜表面的附着和沉积。由此也导致了相对于传统活性污泥工艺,MBR在系统运行能耗上显著偏高,这也一定程度上成为了限制MBR进一步推广应用的制约因素。

正因为此,开展针对MBR的节能降耗研究,尤其是基于大规模工程的应用研究,将是解决上述问题的重要尝试。考虑到MBR主要的能耗单元是好氧池和膜池的鼓风机,因此节能降耗的尝试应重点关注好氧池、膜池的曝气。来自清华大学环境学院的研究团队重点关注了通过动态调节好氧池曝气量,实现曝气量的节省和能耗的降低。
控制思路
好氧池曝气主要是为异养微生物降解氨氮、有机物等提供所需的氧,以及通过气泡的上升过程保证反应池内的均匀混合状态。在工程设计中,通常以前者作为运行参数确定和设备选型的依据。因此,在确定的来水水质、水量参数下,好氧池的在线水质是与好氧池曝气量直接相关的。
基于这样的关系,即可建立基于好氧池水质参数的反馈控制过程。而实际上,已有不少研究报道了基于在线DO浓度的曝气反馈控制策略,且该策略已被证明可以在工程上实施。然而,从DO浓度出发,虽然可以动态调节好氧池曝气量,但对于实际情况中来水水质、水量的波动情况,好氧池的污染物水质指标仍然有很大可能是波动的,而波动即在一定程度上意味着好氧池的污染物去除过程仍存在优化的空间。也正是由此,尝试建立基于好氧池污染物浓度的曝气反馈控制策略,不管是从研究上,还是工程上都是具有重要意义的。

光催化法是利用光照某些具有能带结构的半导体光催化剂如TiO2、ZnO、CdS、WO3等诱发强氧化自由基?OH,使许多难以实现的化学反应能在常规条件下进行。锐钛矿中形成的TiO2具有稳定性高、性能优良和成本低等特征。在*范围内开展的研究是获得改良的(掺入其他成分)TiO2,改良后的TiO2具有更宽的吸收谱线和更高的量子产生率。

电化学氧化法
电化学氧化又称电化学燃烧,是环境电化学的一个分支。其基本原理是在电极表面的电催化作用下或在由电场作用而产生的自由基作用下使有机物氧化。除可将有机物*氧化为CO2和H2O外,电化学氧化还可作为生物处理的预处理工艺,将非生物相容性的物质经电化学转化后变为生物相容性物质。这种方法具有能量利用率高,低温下也可进行;设备相对较为简单,操作费用低,易于自动控制;无二次污染等特点。

超声辐射降解法
超声辐射降解法主要源于液体在超声波辐射下产生空化气泡,它能吸收声能并在极短时间内崩溃释放能量,在其周围极小的空间范围内产生1 900~5 200 K的高温和超过50 MPa的高压。进入空化气泡的水分子可发生分解反应产生高氧化活性的?OH,诱发有机物降解;此外,在空化气泡表层的水分子则可以形成超临界水,有利于化学反应速度的提高。

上一篇:一体化污水处理设备的工艺特点 下一篇:一体化污水处理设备的核心单元是什么
热线电话 在线询价
提示

请选择您要拨打的电话: