品牌
生产厂家厂商性质
潍坊市所在地
社区卫生服务中心污水处理设备
社区卫生服务中心污水处理设备——设计事项
化粪池的具体设计可参见《给水排水设计手册》第2册。化粪池设计的注意事项如下:
(1) 为防止污染地下水,化粪池须进行防水、防渗设计。
(2) 化粪池的设计应与村庄排污和污水处理系统统一考虑设计,使之与排污或污水处理系统形成一个有机整体,以便充分发挥化粪池的功能。
(3) 化粪池的平面布置选位应充分考虑当地地质、水文情况和基底处理方法,以免施工过程中出现基坑护坡塌方、地下水过多而无法清底等问题。
(4) 化粪池距地下给水排水构筑物距离应不小于30m,距其他建筑物距离应不小于5m,化粪池的位置应便于清掏池底污泥。
(5) 当化粪池污水量小于或等于10m3/d,选两格化粪池,第1格容积占总容积65%~80%,第二格容积占20%~35%;若化粪池污水量大于10m3/d,一般设计为三格化粪池,第1格容积占总容积的50%~60%,第二格容积占20%~30%,第三格容积占20~30%;若化粪池污水量超过50m3/d,宜设两个并联的化粪池;化粪池容积小不宜小于2.0m3,且此时好设计为圆形化粪池(又称化粪井),采取大小相同的双格连通方式,每格有效直径应大于或等于1.0m。
(6) 化粪池水面到池底深度不应小于1.3m,池长不应小于1m,宽度不应小于0.75m。
沼气由一级三相分离器收集。由于沼气气泡形成过程中对液体做的膨胀功产生了气提的作用,使得沼气、污泥和水的混合物沿沼气提升管上升至反应器顶部的气液分离器,沼气在该处与泥水分离并被导出处理系统。泥水混合物则沿泥水下降管进入反应器底部的混合区,并于进水充分混合后进入污泥膨胀床区,形成所谓内循环。根据不同的进水COD负荷和反应器的不同构造,内循环流量可达进水流量的0.5-5倍。
使活性污泥停留时间与废水停留时间分离,形成了上流式厌氧污泥床(UASB)反应器的雏型。1974年荷兰CSM公司在其6m3反应器处理甜菜制糖废水时,发现了活性污泥自身固定化机制形成的生物聚体结构,即颗粒污泥(granular sludge)。颗粒污泥的出现,不仅促进了以UASB为代表的第二代厌氧反应器的应用和发展,而且还为第三代厌氧反应器的诞生奠定了基础。 UASB由污泥反应区、气液固三相分离器(包括沉淀区)和气室三部分组成。
厌氧生物滤池
厌氧生物滤池是密封的水池,池内放置填料,污水从池底进入,从池顶排出。微生物附着生长在滤料上,平均停留时间可长达 100d左右。滤料可采用拳状石质滤料,如碎石、卵石等,粒径在40mm左右,也可使用塑料填料。塑料填料具有较高的空隙率,重量也轻,但价格较贵。
根据对一些有机废水的试验结果,当温度在 25℃一35℃时,在使用拳状滤料时,体积负荷率可达到3~6kgCOD/ m3·d;在使用塑料填料时,体积负荷率可达到3-10kgCOD/ m3·d。厌氧生物滤池的主要优点是:处理能力较高;滤池内可以保持很高的微生物浓度;不需另设泥水分离设备,出水SS较低;设备简单、操作方便等
厌氧流化床反应器 是一种生物膜法处理方法,它利用砂等表面积的物质为载体,厌氧微生物以生物膜形式结在砂或其它载体的表面,在污水中成流动状态,微生物与污水中的有机物进行接触吸附分解有机物,从而达到处理的目的。本设备可广泛应用于食品加工、酿造、味精、造纸等高浓度有机污水。制革、制药、发酵淀粉等高浓度有机污水。羊毛加工,屠宰等一切COD大于2000的高浓度有机污水。YLH厌氧反应器采用以砂为载体,设备结构为内外两个圆筒,利用特制的轴流泵,使污水和有机生物膜的砂在外筒中进行循环,达到流化的目的。由于砂的比表面积大,每立方米可5500-6500m2/m3(折合一般填料40-50m3),因而生物接触面积特别大,因而处理效率很高,每立方米有效反应器容积可每天处理COD达35-45kgCOD/m3,比一般的厌氧设备处理3-6kgCOD/m3要大得多。
基本要求有:
(1)为污泥絮凝提供有利的物理、化学和力学条件,使厌氧污泥获得并保持良好的沉淀性能;
(2)良好的污泥床常可形成一种相当稳定的生物相,保持特定的微生态环境,能抵抗较强的扰动力,较大的絮体具有良好的沉淀性能,从而提高设备内的污泥浓度;
(3)通过在污泥床设备内设置一个沉淀区,使污泥细颗粒在沉淀区的污泥层内进一步絮凝和沉淀,然后回流入污泥床内。UASB内的流态相当复杂,反应区内的流态与产气量和反应区高度相关,一般来说,反应区下部污泥层内,由于产气的结果,部分断面通过的气量较多,形成一股上升的气流,带动部分混合液(指污泥与水)作向上运动。与此同时,这股气、水流周围的介质则向下运动,造成逆向混合,这种流态造成水的短流。在远离这股上升气、水流的地方容易形成死角。
烧杯实验
本实验过程中定期考察污泥中反硝化聚磷菌(denitrifying poly-phosphorus accumulating organism, DPAO)的富集情况.测试方法如下:从反应器中取出5 L泥水混合物于烧杯, 污泥清洗后去除上清液, 加入水和丙酸钠后, 恢复混合液体积至5 L, 使COD浓度为300 mg·L-1, 厌氧搅拌180 min.静置后倒弃上清液, 加入水和磷酸二氢钾, 恢复体积至5 L, 使TP浓度为6 mg·L-1, 再平均分两份, 对一份进行曝气, 使其好氧反应, 发生好氧吸磷; 另一份加入硝酸钾, 使硝酸盐浓度为20 mg·L-1, 进行缺氧吸磷.实验过程中定时取样测缺氧和好氧反应阶段的TP浓度.
一次/多次进水-曝气策略对AGS形成及沉降性能的影响
所示为实验期间R1和R2内污泥粒径变化.R1和R2接种污水处理厂絮状污泥, 平均粒径为70 μm, 如图 2(a)所示.随着反应器运行, R1和R2分别在第19 d和第11 d出现细小颗粒.经56和39 d后, R1和R2的平均粒径达到340 μm, 认为R1和R2中实现污泥颗粒化, 成功启动AGS工艺.培养105 d后, R1和R2内颗粒稳定, 平均粒径达到740 μm和791 μm, 颗粒形态如图 2(b)和2(c)所示, 与R1相比, R2中颗粒大小相近, 形态更加圆润, 结构密实.由于R2采用多次进水-曝气策略, 能在周期内多次为反硝化菌提供碳源, 并在进水后进入厌氧段, 为絮状污泥提供反硝化所需的厌氧环境, 以便反硝化菌脱氮.与R1采用的一次进水-曝气策略相比, 多次进水-曝气策略降低了启动期间的NO3--N浓度, 减轻NO3--N对PAO释磷的抑制, 提高了除磷效果.有研究表明, 生物除磷过程中会形成磷酸盐沉淀和带正电的微粒, 可作为细胞附着的内核, 成为颗粒生长的“起点”.由此分析, 启动期间R2中NO3--N浓度低于R1, 除磷效果更好, 易产生磷酸盐沉淀和带正电的微粒, 正电微粒能吸附带负电的细胞体, 可作为颗粒污泥的晶核; 磷酸盐沉淀可作为细胞附着的内核, 与絮状污泥通过EPS黏附结合, 形成聚集体, 两者都可以促进颗粒污泥形成, 故与R1相比, R2的污泥颗粒化时间较短