HDG6000地下金属管线探测仪电气原理说明
时间:2022-11-03 阅读:99
HDG6000地下金属管线探测仪用于各种复杂的地下管线探测、定位及故障查找。便携式设计,适用野外作业。在不开挖的条件下检测,多种模式准确测出埋地金属管线的位置,准确地对破损点进行定位。对埋地管线的定位和破损点检测由同一仪器进行,完整提供管线状况的全面资料。液晶中文图形显示;电缆故障的精确定位;不需市电,便于野外操作;连续自动阻抗匹配,不需人工干预;多天线、多通道,直接显示电缆埋深;寻测50Hz运行电缆路径;具有背光功能适合夜间使用;电流测量用于平行管线;内置欧姆表可测环路电阻;地下未知管线的普查;带电电缆的路径查找;过热过流自动保护。功能与特点:适用于各种复杂的地下管线探测、定位及故障查找。便携式设计,适用野外作业。在不开挖的条件下检测。多种模式准确测出埋地金属管线的位置,准确地对破损点进行定位。对埋地管线的定位和破损点检测由同一仪器进行,完整提供管线状况的全面资料。液晶中文图形显示;电缆故障的精确定位;不需市电,便于野外操作;连续自动阻抗匹配,不需人工干预;多天线、多通道,直接显示电缆埋深;寻测50Hz运行电缆路径;具有背光功能适合夜间使用;电流测量用于平行管线;内置欧姆表可测环路电阻;地下未知管线的普查;带电电缆的路径查找;过热过流自动保护。使通过检测金属管线上发出的电磁波的强度而确定其位置的,所以首先由发射机将一特定频率的信号感应或直连到管线上,从而在管线上感应出电流,该电流在金属管线上传播,同时辐射出电磁波,这样,接收机用不同的方法检测这一特定频率的信号强度,信号的走向即为地下管线的走向,通过两组接受装置同时接受电磁波信号比较可以确定其深度。
罗盘显示:直观显示管线位置。
左右指示:左右箭头显示管线位置。
跟踪正误提示:部分频率下,实时测量管线电流方向,实现跟踪正误提示,排除临线干扰。
实时进行深度和电流测量。
历史曲线显示:直观显示信号变化情况。
鉴别:卡钳(选配件)鉴别可明确给出鉴别结果,听诊器(选配件)鉴别在不方便使用卡钳时使用。
接地故障查找:使用A字架(选配件)可定位管线的对地绝缘破损点,无须调零,箭头指示故障点方向。
全数字化高精度采样及处理,接收通频带极窄,抗力强,能充分抑制邻近运行电缆及管道的工频及谐波干扰。
多种探测频率:主动探测和被动探测。
发射机多种信号输出方式:直连输出、卡钳耦合、辐射感应。
发射机大功率输出,输出多档可调,自动阻抗匹配,全自动保护。
内置大容量锂离子电池组,欠压自动关机,长时间无操作自动关机。
回路的形成
为了在管线上产生电磁波必须要在管线与地形成闭合回路,才能产生感应电流。发射机向导通管线发射信号,所发射信号沿管线传输并产生电磁场,在所寻管线的远端,信号通过地表返回发射机,形成回路。
产生的回路如下图:
发射机的工作原理
发射机的信号发射,采用三种方法之一:
直连式寻踪方法
这是最佳的探测方法,发射机红色接线端直接连接到管线的裸露金属部分(切勿将其接入带电线路中),另一端接地(最好选择较湿润的土地)。此种方法产生的信号,适用于音频,中频和射频工作状态。
耦合式寻踪方法
当不能与待寻管线直接相连时,可用耦合钳进行感应式探测。此方法最好用于射频工作状态,耦合钳平面与管线垂直,近端和远端都必须接地。
发射机:
1. 输出方式:直连输出、辐射感应、卡钳耦合(选配)。
2. 输出频率:640Hz(复合频率)、1280Hz(复合频率)、10kHz、33kHz、83kHz。
3. 输出功率:10W,10档可调,自动阻抗匹配。
4. 直连输出电压:150Vpp。
5. 过载和短路保护。
6. 人机界面:128×64点阵液晶显示器。
7. 内置电池:4节18650锂离子电池,标称7.4V,6.8Ah
l 接收机:
1. 输入方式:内置接收线圈、接收卡钳(选配)、听诊器(选配)、查障A字架(选配)。
2. 接收频率:
主动探测频率:640Hz、1280Hz、10kHz、33kHz、83kHz。
工频被动探测频率:50Hz/60Hz和250Hz/300Hz(用户可配置)。
射频被动探测频段:中心频率分别为10kHz、33kHz、83kHz。
3. 管线探测模式:宽峰法、窄峰法、音谷法。
4. 电缆鉴别模式:接收卡钳(选配)智能鉴别和电流测量、听诊器(选配)鉴别。
感应式寻踪方法
在某些情况下,操作者不可能接近管道或电缆进行直接连接或用测量夹钳定位,此时可用发射机内置的感应天线来定位。适用于射频和中频,将发射机放置于管道或电缆的上方便能感应出地下有无管线。应用于中频或射频工作状态,管线两端都必须接地。
耦合式寻踪法示意图
接收机的工作原理
接收机具有三种工作模式:
1. 波峰模式:探测仪位于管线上方接受的强度最大。波峰法是用水平线圈接收电磁场水平分量的强度。对常规无干扰的管线进行峰值检测来说,在管道正上方时,当接收机的正面与管线垂直时磁场响应强度最大。因为线圈离管线近,线圈所在的磁场强,并且磁场与接受线圈垂直,通过线圈的磁通量最大,当接收机向管线两侧延伸检测时,磁场响应强度对称且逐渐减小。因为此时的线圈离管线距离远,线圈所在的磁场变弱,而且此时磁场磁力线的方向与线圈的平面不再垂直,通过线圈的磁通量变小,从而在管线的正上方产生一个强度为一个峰值。
2.波谷模式:波谷法用 垂直线圈测量电磁场的垂直分量,检测目标管线上产生的磁场与管线垂直的同心圆面,接收机在管线上方信号响应最小,两侧各有一个高峰。这是由于这些磁场与接受线圈平行,此时通过接收的垂直线圈的磁通量为零,信号响应有一个极小值,当接收机在管道正上方两侧时,仪器的响应会随着远离管线而逐渐增大,这是因为,此时的磁场方向与线圈平面已形成一定的角度,通过线圈的磁通量逐渐变大。同时,随着线圈的远离,磁场的强度逐渐变弱,当这一因素成为影响通过线圈磁通量变化的主要因素时仪器的响应又会逐渐变小,从而在管线上方的强度为一个低谷。波峰法较波谷法更为精确,但是测量范围却较小。
管线定位的三种频率很容易区分电力电缆和其他金属管线。主动频率可使操作者匹配发射机频率,并根据现场条件选择输出功率,这样即使在复杂情况下也能保证最佳定位结果。被动频率不用发射机就可以容易地定位带电电缆,并特别适用于在挖掘前进行地面勘察。管道定位时使用三种不同的频率,可给出的金属面定位和深度测量的任务,从而对地下设施进行三维定位。 地下管线检测仪的发射机发出的信号我们称为“主动信号”;而其他设施,例如:供配电电缆、通信电缆内产生的信号称为“被动信号”。仪器探测主动信号时称为:“主动信号工作模式”,仪器探测被动信号时称为:“被动信号工作模式”。可探测工作的信号有:主动信号“音频”、“中频”“射频”及被动信号“50Hz”。
3. A字架模式主要用于管线外皮故障定位。