华顶电力 品牌
生产厂家厂商性质
武汉市所在地
HDPDF-1000直流系统接地故障查找仪报价 电池修复/检测
面议HDBS-3智能蓄电池状态测试仪 电池修复/检测
面议HDBS-2智能蓄电池内阻测试仪 电池修复/检测
面议HDBM蓄电池均衡维护系统 电池修复/检测
面议HDFE01手持式直流接地故障查找仪 电池修复/检测
面议HDBD-1蓄电池电导测试仪 电池修复/检测
面议HDBS-1蓄电池内阻测试仪 电池修复/检测
面议HDZF智能蓄电池充电放电放电综合测试仪 电池修复/检测
面议HDFD宽电压蓄电池放电测试仪 电池修复/检测
面议HDDW-UPS蓄电池智能活化仪 电池修复/检测
面议HD4830全功能蓄电池在线充放电分析仪 电池修复/检测
面议HDZF智能蓄电池充电放电综合测试仪 电池修复/检测
面议产品介绍:
HDDJ智能放电监测仪是武汉华顶电力设备有限公司针对蓄电池组进行核对性放电实验、容量测试、电池组日常维护、工程验收以及其它直流电源带载能力的测试而设计。采用新的无线通讯技术,通过PC机监控软件可对蓄电池放电过程进行实时监测,监控每节电池的放电过程。功耗部分采用 新型PTC陶瓷电阻作为放电负载,*避免了红热现象,安全可靠无污染。整机由微处理器控制,液晶显示、中文菜单。外观设计新颖,体积小、重量轻、移动方便。各种放电参数设定完成后,自动完成整个恒流放电过程。*实现智能化。使整个放电过程更安全。HDDJ智能放电监测仪携带方便、智能化的专业设计使放电测试工作变得简捷、轻松,大大降低了专业维护人员的劳动强度,也提高了放电测试的科学性和智能化。
单体检测整组放电仪在原有产品的基础上结合蓄电池测试技术、无线通讯技术、计算机信息处理等多项技术,推出具有无线单体检测功能的新一代单体检测整组放电仪。采用无线传输单体电压采集系统,可短距离无线通讯传送数据,数据采集速度快,精度高,抗干扰能力强,操作简便,可记录电池放电过程每一时间段的电压变化,有效避免了连线引起的误差及连接电缆损坏等安全隐患,无线采集单体电压电池间连接导线产生的“过桥电压”,保证对放电过程中可能存在的个别连接器松动等而存在较大连接电阻,从而监测出个别电压异常,及时排除隐患,防止连接处过热而引起火灾等重大事故发生,增强了系统的稳定性、可靠性,扩大了产品的使用范围。
传统的单体电池电压的监测主要有两种方式:手动测量和有线自动测量。手动测量由于时间上无法做到连续和同步,人为误差较多,精度低,因此无法对蓄电池的性能作出较为精确、客观的判断,且工作量大。有线自动测量虽然相对于手动测量提高了数据采集的速度和精度,减少了工作量,但是连线较多,操作复杂,以检测一组24节单体电池为例,需从主机中引出25条单体测试线缆连接至电池组,其长度少则一米,多则十几米,不但增加了企业的购置费用,而且由于连接电缆多且长,容易造成连接错误,且无法避免连接电缆损坏等安全隐患。使用了无线传输单体电压采集系统的单体检测整组放电仪,有效克服了传统单体电池电压监测方法的不足。无线传输单体电压采集系统,采用了Nordic公司的新推出的自带基准功能的nRF9E5芯片,并应用于RFID系统,RFID系统通信协议依据ISO/IEC 18000-7协议标准,大大提高了电压采集精度和数据的保密性,同时内置一块高速CPU对采集的数据进行处理,每一个无线传输单体电压采集系统可同时采集多节单体电压,。可以通过主机进行无线的功能设定,具有微发射功率高接收灵敏度,高抗干扰能力,基于FSK调制方式,采用高效前向纠错信道编码技术,保证了测量结果的准确度。ISN波段无须申请即可使用,可以适应232、485、LIN等多种数据传输格式,为数据的处理提供了方便。采用新一代单体检测整组放电仪监测单体电池,无须连接单体电池与主机,即可直接进行检测,使用方便,减少企业的购置费用。HDDJ智能放电监测仪是专门针对蓄电池组进行核对性放电实验、容量测试、电池组日常维护、工程验收以及其它直流电源带载能力的测试而设计。采用新的无线通讯技术,通过PC机监控软件可对蓄电池放电过程进行实时监测,监控每节电池的放电过程。HDDJ智能放电监测仪功耗部分采用新型PTC陶瓷电阻作为放电负载,*避免了红热现象,安全可靠无污染。整机由微处理器控制,液晶显示、中文菜单。外观设计新颖,体积小、重量轻、移动方便。各种放电参数设定完成后,自动完成整个恒流放电过程。*实现智能化。使整个放电过程更安全。HDDJ智能放电监测仪系列便携、智能化的专业设计使放电测试工作变得简捷、轻松,大大降低了专业维护人员的劳动强度,也提高了放电测试的科学性和智能化。
二.功能特点
1.采用PTC陶瓷电阻,避免了红热现象,使整个放电过程更安全。
2.具有无线通讯功能,无线采集盒与放电主机及上位机监控PC机三者之间通过无线方式进行通讯。简化接线,灵活方便。
3.无线采集盒可对每节电池进行监测,实现对电池组放电过程的完整监控。
4.设备安装、调试、维护简便,各采集模块前后采用隔离技术,安全性、可靠性程度高
5.配备的PC机监测系统,可实时监测整个放电过程,并把监测到的总电压、放电电流和各单体电池电压等数据进行分析、并可生成相应的数据报表。直观反应蓄电池组性能的曲线,图形、报表等,并可打印、查询。
6.有USB接口,可将放电过程的数据存入U盘,并导入PC机。PC数据管理软件可对电池放电的过程进行分析、并可生成相应的数据报表。使数据的转存更加 方便。
7.采用智能单片机ARM控制、液晶中英文显示。菜单操作简单明了。
8.自动保护功能,设定放电时长到、放电容量到;蓄电池组电压低于设定的低保护电压;负载连线出现异常等,自动停止放电并报警,同时自动记录停机方式。
9.可设定测试/放电终止条件,包括单体电池电压、电池组终止电压、放电电流、放电时间。
10.可通过短时放电(10分钟)来预估蓄电池组容量。
11.可记录测试/放电过程每节电池放电情况,主要是电池组总容量、总电压、总电流以及电压低的单体电池的电压变化情况。
三.产品参数
通讯用48V蓄电池组系列 | 电力用220V蓄电池组系列 | |
电池组电压 | DC48V | DC220V |
工作电源 | AC220V或DC48V | AC220V或DC220V |
放电电流 | 0~300A连续可调 | 0-100A连续可调 |
放电电流精度 | 1% | 1% |
放电电流分辨率 | 0.1A或0.5% | 0.1A或0.5% |
放电终止电压 | 10~60V可调 | 176-264V可调 |
电压测试精度 | 0.5% | 0.5% |
采样间隔 | 5s~1min | 5s~1min |
工作环境 | 湿度:5%~90%; 温度:0℃~+40℃ | |
散热方式 | 强制风冷 | |
主机外形尺寸 | 大530 X 400 X 220 (mm) 中492 X 352 X 176(mm) 小400 X 272 X 176(mm) | |
主机重量 | 大 21kg 中 16 kg 小11 kg | |
型号说明 | A-简易型, B-无线通讯, C-RS485通讯, D-载波通讯 |
序号 | 品名 | 数量 | 备注 |
1 | 智能放电监测仪主机 | 1 | |
2 | 数据采集盒(兼容2V、6V、12V电池 | - | 不同电压等级,数量不等。 |
3 | 监测通讯终端 | 1 | |
4 | 监测通讯终端电源 | 1 | |
5 | U盘 | 1 | |
6 | 放电电缆 | 2 | 红、黑各一条 |
7 | 电压监测线 | 1 | |
8 | 电流传感器(选配件) | 1 | 不同电流等级,量程不同。 |
9 | 数据采集线(2V、6V/12V两种) | -- | 不同电压等级,数量不等。 |
10 | 主机天线 | 1 | |
11 | AC220V电源线 | 1 | |
12 | 说明书 | 1 | |
13 | PC机软件光盘 | 1 | |
14 | 铝合金包装箱 | 1 | |
15 | USB-RS232转接线 | 1 | |
16 | USB-RS232转接线驱动光盘 | 1 |
更多详情请关注武汉华顶电力设备有限公
电机部件造成一定的危害。结合现场测量数据对轴电压的性质作了分析,列举出对发电机造成损坏的各种情形。在其检测手段上,分别对轴绝缘检测法和轴电流测量法的原理进行了分析,对三峡电站的应用效果作了评估,比较了两种方法的特点优劣,提出了应用注意事项和优化手段。
轴电压的性质与轴绝缘系的必要性由于定、转子之间的气隙不均匀以及定子铁芯的局部磁阻较大、磁路不对称等原因,导致发电机的定子磁场存在不平衡,这会使得水轮发电机的转子上产生与轴相交的交变磁通和轴向的感应电势,即轴电压[1]。对于水轮发电机,由于机组转速不高,且通过设计制造和安装单位对机组安装质量的控制,机组正常运行时该感应电势对地不会太高,发电机上端轴轴电压一般不超过10 V,三峡电站机组的轴电压也大致处于这一水平。为某型水轮发电机的轴电压现场实录波形,该型机因定子磁路设计上的问题,轴电压偏高,峰值甚至达数十伏。电压谐波特征明显,但起主要作用的是基波与三次谐波[2]。以三峡某机型为例,通过FFT 分析,(如图2)当机端压为额定时,三次谐波占整个电压比例的一半以上。清华大学与福建省电力系统研究和生产单位合作,也获取了有价值的轴电压频谱数据[3],结论与三峡机型的特征是吻合的。尽管轴电势有效值不大,但在发电机内部各种交变的脉冲磁场的作用下,其峰值可能很高。对水轮发电机而言,由于转子大轴电阻很小,且一般轴承与大轴间只有不到1 mm 的油膜间隙,如轴领与大轴间绝缘破坏,轴电压将沿轴承和底板形成闭合回路产生轴电流。视瓦面油膜破坏情况,轻则使润滑油劣化进一步恶化轴瓦的运行环境,轴承震动增大,重则对轴瓦放电甚至击穿,对轴瓦造成电气侵蚀,灼伤瓦面和镜板。除了对瓦面和镜板造成潜在损坏外,如果轴电流足够大,还会磁化大轴。已知发生过的故障轴电流系大值可达数百安培。有案例[4]表明,某200 MW 汽轮发电机发生轴承油膜被轴电压击穿而受破坏,导致较大轴电流。经过近4个月的检修再次起动并列时,由于轴向剩磁太大,转轴成为单极直流发电机,感应电动势产生的轴电流很快使轴瓦冒烟,被迫再次停机进行严格退磁,才使剩磁降低。正常的轴电压对设备本身并不产生直接危害,只有在轴绝缘破坏后才产生后果。因此,轴绝缘的监测的必要性逐渐成为广泛共识。从某种意义上讲,轴瓦的破坏程度取决于轴电流的幅值和作用时间;从运行角度来讲,运行人员需要随时或提前知道轴电流的变化或轴承绝缘的损坏程度。根据这两种取向,一次设备制造厂家就提出各种对轴绝缘进行监测的方法。
轴绝缘监测方法为了防止轴电流对润滑油和轴瓦的损害,三峡电站机组主要采用两种防范手段。一是从结构上入手,在转子下端对大轴碳刷接地,在上端轴与上端轴领间加酚醛玻璃板绝缘,以防止轴电流形成回路,同时限制大轴对地电位;二是采用轴HDDJ型UPS蓄电池放电监测仪开关电器用司针对绝缘监测手段对轴绝缘进行监测,以保证在轴电流达到轴瓦的破坏电流值以前,通知运行人员,采取必要的措施。峡机组的生产厂家分别采用了两类不同的轴绝缘监测方案。一类监测方案是加装轴CT,通过监测轴电流系上端轴绝缘情况;另一类监测方案是采用两块SINEAX V604 通用可编程变送器利用姆欧法对上端轴轴领、轴领与大轴间的铜箔及大轴间的绝缘进行分段系,可参见图4。
2.1 轴CT 电流测量法通过轴CT 对通过大轴的交流电流的大小进行监测的方法是国内机组制造厂商普遍采用的种方法。轴电流监测装置能够通过轴CT 将发电机大轴上产生的轴电流检测出来,并根据不同的轴电流值发出相应的信号,从而有效地防止轴电流的破坏,保护轴承及轴领。同时,轴电流保护装置还可将测HDDJ型UPS蓄电池放电监测仪开关电器用司针对量值转