其他品牌 品牌
生产厂家厂商性质
上海所在地
二氧化硫分析仪多应用于存在化学反应的生产过程,例如氨气合成流程中,在使用温度仪表和压力仪表控制反应环境以外,还需要使用气体分析仪表来分析进气的化学成分,控制氢气和氨气之间的合理比例,这样才能大限度的提高氨气合成率,而获得较高的生产效率。
气体分析仪是测量气体成分的流程分析仪表。在很多生产过程中,特别是在存在化学反应的生产过程中,仅仅根据温度、压力、流量等物理参数进行自动控制常常是不够的。由于被分析气体的千差万别和分析原理的多种多样,气体分析仪的种类繁多。常用的有热导式气体分析仪、电化学式气体分析仪和红外线吸收式分析仪等。
主要利用气体传感器来检测环境中存在的气体种类,气体传感器是用来检测气体的成份和含量的传感器。一般认为,气体传感器的定义是以检测目标为分类基础的,也就是说,凡是用于检测气体成份和浓度的传感器都称作气体传感器,不管它是用物理方法,还是用化学方法。比如,检测气体流量的传感器不被看作气体传感器,但是热导式气体分析仪却属于重要的气体传感器,尽管它们有时使用大体*的检测原理。
根据不同气体具有不同热传导能力的原理,通过测定混合气体导热系数来推算其中某些组分的含量。这种分析仪表简单可靠,适用的气体种类较多,是一种基本的分析仪表。但直接测量气体的导热系数比较困难,所以实际上常把气体导热系数的变化转换为电阻的变化,再用电桥来测定。热导式气体分析仪的热敏元件主要有半导体敏感元件和金属电阻丝两类。半导体敏感元件体积小、热惯性小,电阻温度系数大,所以灵敏度高,时间滞后小。
二氧化硫分析仪通过分析激光被气体的选择性吸收来获得气体的浓度。它与传统红外光谱吸收技术的不同之处在于,半导体激光光谱宽度远小于气体吸收谱线的展宽。因此,DLAS技术是一种高分辨率的光谱吸收技术,半导体激光穿过被测气体的光强衰减可用朗伯-比尔(Lambert-Beer)定律表述式得出,关系式表明气体浓度越高,对光的衰减也越大。因此,可通过测量气体对激光的衰减来测量气体的浓度。