众迈环保 品牌
生产厂家厂商性质
天津市所在地
100吨学校MBR一体化污水处理设备流程
学校的污水分多种污水来源,学校餐厅污水,学校实验室污水,学校生活污水, 校区内生活污水与一般城市生活污水性质类似,主要来源于学生和教职工日常生活中卫生间冲洗、厨房和衣物洗涤等过程排放的污水,含大量有机污染物和悬浮颗粒污染物。污水的可生化性强,易于好氧生化处理。根据污水进水水质和污水处理的排放标准要求,污水处理工艺要求能除碳、脱氮、除磷和去除污水中悬浮污染物。
100吨学校MBR一体化污水处理设备流程
化粪池,格栅,调节池,厌氧池,好氧池,膜池,沉淀池,消毒池,出水
1 MBR脱氮除磷潜力分析
MBR工艺是将现代膜分离技术与生物处理技术有机结合起来的一种新型高效污水处理及回用工艺,因其*的高污泥浓度和生物种群多样性的特征,在提高生物脱氮除磷效率方面具有较大潜力。在MBR中,污泥停留时间(SRT)可以不依赖于水力停留时间(HRT)而单独加以控制,即可以通过膜的截留作用,在不增加池容的前提下延长SRT,可保证如硝化菌这类生长速度缓慢的微生物在系统中被*保留,满足硝化菌的生长周期要求。同时,通过DO控制和强化生物段的功能,在MBR中还发现存在反硝化除磷菌(DPB),在脱氮的同时也能有效除磷。此外,膜过滤取代了传统生物工艺中的二沉池,使反应器结构简单,占地面积小,还可获得高质量的出水并同用。因此将生物脱氮除磷工艺与膜分离技术相结合,形成具有脱氮除磷功能的MBR具有广阔的应用前景。
A/O生物接触氧化法简介:
生物接触氧化法是一种介于活性污泥法与生物滤池之间的生物膜法工艺,其特点是在池内设置填料,池底曝气对污水进行充氧,并使池体内污水处于流动状态,以保证污水与污水中的填料充分接触,避免生物接触氧化池中存在污水与填料接触不均的缺陷。
该法中微生物所需氧由鼓风曝气供给,生物膜生长至一定厚度后,填料壁的微生物会因缺氧而进行厌氧代谢,产生的气体及曝气形成的冲刷作用会造成生物膜的脱落,并促进新生物膜的生长,此时,脱落的生物膜将随出水流出池外。
A/O生物接触氧化法优点:
1、由于填料比表面积大,池内充氧条件良好,池内单位容积的生物固体量较高,因此,生物接触氧化池具有较高的容积负荷;
2、由于生物接触氧化池内生物固体量多,水流*混合,故对水质水量的骤变有较强的适应能力;
3、剩余污泥量少,不存在污泥膨胀问题,运行管理简便。
A/O生物接触氧化法运作流程:
污水由排水系统收集后,进入污水处理站的格栅井,去除颗粒杂物后,进入调节池,进行均质均量,调节池中设置预曝气系统,再经液位控制仪传递信号,由提升泵送至初沉池沉淀,废水自流至*生物接触氧化池,进行酸化水解和硝化反硝化,降低有机物浓度,去除部分氨氮,然后入流O级生物接触氧化池进行好氧生化反应,在此绝大部分有机污染物通过生物氧化、吸附得以降解,出水自流至二沉池进行固液分离后,沉淀池上清液流入消毒池,经投加氯片接触溶解,杀灭水中有害菌种后达标外排。
厌氧处理系统
在缺氧条件下,利用厌氧菌(包括兼性厌氧菌)分解污水中有机污染物的方法,又称厌氧消化或厌氧发酵法。因为发酵产物产生甲烷,又称甲烷发酵。此法既能消除环境污染,又能开发生物能源,所以倍受人们重视。污水厌氧发酵是一个极为复杂的生态系统,它涉及多种交替作用的菌群,各要求不同的基质和条件,形成复杂的生态体系。甲烷发酵包括3个阶段:液化阶段、产氢产乙酸阶段和产甲烷阶段。
在厌氧微生物处理污水过程中,不同的阶段生活着不同优势的微生物。在水解发酵阶段中,主要微生物有梭状芽孢杆菌属、丁酸弧菌属、双歧杆菌属和假单胞菌属等。在产氢、产乙酸阶段中,主要的微生物有互营单胞菌属、互营杆菌属、暗杆菌属和梭菌属等。在产生甲烷阶段中,主要的微生物有甲烷杆菌属、甲烷球菌属和甲烷八叠球菌属等。
反硝化聚磷菌(denitrifying phosphate accumulating organisms,DNPAOs)兼具反硝化脱氮和聚磷的功能,广泛存在于厌氧好氧交替的环境中,如在A/O(anaerobic/oxic)、A2/O、SBR、UCT、BCFs(biologisch-chemische-fosfaat-stikstof-verwijdering)等工艺中均可发现此类菌的存在。DNPAOs属于兼性厌氧菌,相较于聚磷菌(phosphate accumulating organisms,PAOs),能够以NO3−-N、NO2−-N作为终电子受体,在超量吸磷的同时进行反硝化脱氮。自20世纪90年代起,DNPAOs因其“一碳两用”的特点,在双污泥系统中被证实能够节约50%的碳源利用、30%的需氧量和降低50%污泥产出[5-6]。
缺氧条件下的反硝化除磷现象已成为同步脱氮除磷工艺的研究热点,有关的研究多集中于SBR、A2N、Dephanox、UCT、BCFs及A2/O改良工艺,这些典型工艺可分为单污泥系统和双污泥系统。其中,Dephanox工艺与A2N-SBR工艺均依据反硝化聚磷菌的特点而设计,属于双污泥系统,工艺流程以A2N-SBR工艺为例:生活污水首入厌氧/缺氧-SBR进行碳源吸收和生物释磷,然后静沉排水,含氨氮上清液进入硝化-SBR完成硝化反应,含硝氮出水再回流至厌氧/缺氧-SBR进行缺氧反硝化除磷。其他工艺则为单污泥系统:改良UCT工艺及BCFs工艺则是在厌氧池与缺氧池之间增设一个缺氧池,避免了回流污泥中硝氮对生物释磷的抑制,同时创造了有利于反硝化聚磷菌生长的条件,使反硝化除磷作用在脱氮除磷中扮演重要角色;A2/O改良工艺中,以冯元平等自行设计的A3/O-MBR工艺为例,此工艺与改良UCT工艺和BCFs有相通之处,在厌氧池与缺氧池之间增设缺氧池,并与MBR组成复合工艺,运行结果显示,反硝化聚磷菌占总聚磷菌的比例达到95.47%,成为该系统实现良好脱氮除磷效能的关键。
和活性污泥相比,生物膜中微生物的种类和数量更丰富,通常包括细菌、病毒、真菌和原生动物等。细菌以化能异养型为主,包括好氧细菌、厌氧和兼性厌氧细菌。较为常见的细菌种类有:动胶菌属、芽孢杆菌属、脱硫弧菌属、假单胞菌属、产碱杆菌属、无色杆菌属、黄杆菌属和球衣菌属等。真菌在pH偏低的污水中容易生长,主要种类有青霉属、曲霉属、毛霉属等。原生动物主要有纤毛虫,如钟虫等。
生物膜的功能是分解水中的有机污染物,达到净化污水的目的。能分解糖被的好氧微生物首先在新的载体表面附着,并生长繁殖。然后丝状细菌也附着生长。这时原生动物也开始出现。随着细菌生物量的不断增加,生物膜逐渐增厚,水体中的溶解氧不能扩散到生物膜的内层,这时兼性厌氧和厌氧微生物在内层开始生长繁殖,分解水体扩散进来的有机物和好氧微生物的代谢产物。逐渐增厚的生物膜,随着糖被中多糖类物质的被分解和水力搅拌的作用,会产生脱落。在脱落的地方,又有新的生物膜形成。如此循环,不断进行有机污染物的分解,使污水得到净化。
自然生物处理法
利用自然条件下生长繁殖的微生物来处理污水,形成水体-微生物-植物组成的生态系统,对污染物进行一系列的物理-化学和生物净化,可对污水中的营养物质充分 利用,有利于绿色植物生长,实现污水的资源化、无害化和稳定化。该法工艺简单,建设与运行费用都较低,效率高,是一种符合生态原理的污水处理方式,但容易 受自然条件影响,占地较大。主要有水生植物塘、水生动物塘、土地处理系统以及上述工艺组合系统。稳定塘是利用塘水中自然生长的微生物处理污水,而在塘中生 长的藻类的光合作用和大气氧作用向塘中供氧。在稳定塘内污水停留时间长,其生化过程和自然水体净化过程相似。稳定塘按其微生物反应类型 分为好氧塘、兼性塘、厌氧塘和曝气塘等。土地处理是以土地净化为核心,利用土壤的过滤截留、吸附、化学反应和沉淀及微生物的分解作用处理污水中的污染物,土地上生长的农作物可充分利用污水中的水分和营养物。如污水农田灌溉就是一种土地处理方式。
利用兼性厌氧菌在无氧条件下降解有机污染物,主要用于处理高浓度难降解的有机工业废水及有机污泥。主要构筑物是消化池,近年来在这个领域有很大的发展,开创 了一系列的新型高效厌氧处理构筑物,如厌氧滤池、厌氧转盘、上流式厌氧污泥床、厌氧流化床等高效反应装置,该法能耗低且能产生能量,污泥量少。
曝气池中混合物以低BOD值流入沉淀池。活性污泥通过静止、凝集、沉淀和分离,上清液是处理好的水,排放到系统外。沉淀的活性污泥一部分回流曝气池与未处理的废水混合,重复上述过程,回流污泥可增加曝气池内微生物含量,加速生化反应过程。剩余污泥排放出去或进行其他处理后继续应用。
生物膜法
生物膜法是模拟自然界中土壤自净的一种污水处理法,它是利用微生物群体附着在固体填料表面而形成的生物膜来处理污水的一种方法。因此,生物膜法又称为固定膜法。生物膜一般呈蓬松的絮状结构,微孔较多,表面积很大,有很强的吸附作用。废水中的有机物流入时,被膜上的微生物吸附,进行生物降解,从而使废水得到净化。生物膜随着微生物群体的生长增加而逐渐增厚,到一定程度时,它会由于受到水力的冲刷而不断剥落,同时又会不断地形成新的生物膜,而达到动态平衡。
成熟的生物膜一般分为3层,从水体到载体表面依次为外表层、中间层和内层。外表层为好氧层,中间层为微好氧层,而内层为兼性厌氧或厌氧层。由于自然选择的结果,不同的层面生长着不同类型的微生物。在外表层生长的微生物一般为好氧微生物,兼性厌氧和厌氧微生物一般生活在缺氧的内层。
生物膜法
使污水连续流经固体填料,在填料上就能够形成污泥垢状的生物膜,生物膜上繁殖大量的微生物,吸附和降解水中的有机污染物,能起到与活性污泥同样的净化污水作 用。从填料上脱落下来死亡的生物膜随污水流入沉淀池,经沉淀池澄清净化。生物膜有多种处理构筑物,如生物滤料、生物转盘、生物接触氧化和生物流化床等。
⑴生物滤池
生物滤池是以土壤自净原理为依据发展起来的,滤池内有固定填料,污水流过时与滤料相接触,微生物在滤料表面形成生物膜。
净化污水装置由提供微生物生长息栖的 滤床、布水系统以及排水系统组成。生物滤池操作简单,费用低,适用于中小城镇和边远地区。生物滤池分为普通生物滤池、高负荷生物滤池和塔式生物滤池以及曝 气生物滤池等。
⑵生物转盘
通过传动装置驱动生物转盘以一定的速度在接触反应池内转动,交 替的与空气和污水接触,每一周期完成吸附-吸氧-氧化分解的过程,通过不断转动,使污水中的污染物不断分解氧化。生物转盘流程中除了生物转盘外,还有初次 和二次沉淀池。生物转盘的适应范围广泛,对生活污水和各种工业废水都能适用,同时生物转盘的动力消耗低,抗冲击负荷能力强,管理维护简便。
⑶生物接触氧化
在池内设填料,使已经充氧的污水浸没全部填料,填料上长满生物膜,污水与生物膜接触,水中的有机物被微生物吸附,氧化分解和转化成新的生物膜。从填料上脱落 的生物膜随水流到二沉池后被去除,污水得到净化。生物接触氧化法负荷有较强的适应能力,污泥产量少,可保证出水水质。
⑷生物流化床
采用相对密度大于1的细小惰性颗粒,如砂、焦炭、活性炭、陶粒等作为载体,微生物在载体表面附着生长,形成生物膜,充氧污水自上而下流动使载体处于流化状体,生物膜与污水充分接触。生物流化床处理效率高,能适应较大冲击负荷,占地小。
所谓活性污泥是指由菌胶团形成菌、原生动物、有机和无机胶体及悬浮物组成的絮状体。在污水处理过程中,它具有很强的吸附、氧化分解有机物或毒物的能力。在静止状态时,又具有良好沉降性能。活性污泥中的微生物主要是细菌,占微生物总数的90%~95%。,并多以菌胶团的形式存在,具有很强的去除有机物的能力,原生动物起间接净化作用。
活性污泥法根据曝气方式不同,分多种方法,目前常用的是*混合曝气法。污水进入曝气池后,活性污泥中的细菌等微生物大量繁殖,形成菌胶团絮状体,构成活性污泥骨架,原生动物附着其上,丝状细菌和真菌交织在一起,形成一个个颗粒状的活跃的微生物群体。曝气池内不断充气、搅拌,形成泥水混合液,当废水与活性污泥接触时,废水中的有机物在很短时间内被吸附到活性污泥上,可溶性物质直接进入细胞内。大分子有机物通过细胞产生的胞外酶将其降解成为小分子物质后再渗入细胞内。进入细胞内的营养物质在细胞内酶的作用下,经一系列生化反应,使有机物转化为CO2、H2O等简单无机物,同时产生能量。微生物利用呼吸放出的能量和氧化过程中产生的中间产物合成细胞物质,使菌体大量繁殖。微生物不断进行生物氧化,环境中有机物不断减少,使污水得到净化。当营养缺乏时,微生物氧化细胞内贮藏物质,并产生能量,这种现象叫自身氧化或内源呼吸。