污水处理-数级扩大培菌法:根据微生物生长繁殖快的特点,仿照发酵工业中菌种→种子罐→发酵罐数级扩大培菌工艺,分级扩大培菌-污水处理。如某工程设计为三级曝气池,此时可先在一个池中培菌,在少量接种条件下,在一个曝气池内培菌-污水处理,成功后直接扩大至二三级。
污水处理-干泥接种培菌法:好取水质相同已正常运行的污水系统脱水后的干污泥作菌种源进行接种培养。一般按曝气池总溶积1%的干泥量-污水处理,加适量水捣碎,然后再加适量工业废水和浓粪便水。按上述的方法培菌-污水处理,污泥即可很快形成并增加至所需浓度。
jiduan环境微生物是目前国内外学者关注的热点.低温菌是zhongji微生物之一,并根据其生长温度特性分为嗜冷菌和耐冷菌两类.在寒冷环境中,这类微生物仍能通过对自身细胞膜、蛋白酶的调整或合成冷冻保护剂等来适应低温的影响,以一定的速率繁殖、生长和活动.2000年Chevalier 成功地从南极和北极分离到 4 株耐冷的丝状蓝细菌,该菌在低温环境条件下对氮和磷有较高的去除率,从而为低温环境下污水中氮磷等污染物的去除提供了新的思路.在所有的气候条件中,有机污染问题普遍存在,而在寒冷的环境中,温度对生物处理过程影响颇大,各类低温微生物在生物降解过程中发挥越来越显著的作用,如低温酵母在低温条件下对广泛碳氢化合物的降解.在我国北方地区冬季漫长、气温低,微生物活性降低,污水的生物处理效果难以保证,而将低温菌应用到污水处理中,出水的各水质指标都得到了良好的去除效果.但由于直接投放菌体不仅成本高,还会造成大量菌体流失,难以控制它的处理效果,因此,找到一种成本低处理效果又好的方法极为重要.
污水处理6中培菌方法 1、污水处理-直接引进种菌种培菌:有些特殊水质菌种难于培养,还可利用当地科研力量,利用专业的工业微生物研究所培养菌种后再接种培养-污水处理,如PVA()好氧消化即有专门好氧菌。污水处理此种培菌法,投资大,周期长,只有特殊情况才用。
2、污水处理-有毒或难降解工业废水培菌:有毒或难降解工业废水,只能先以生活污水培菌,然后再将工业废水逐步引入,逐步驯化的方式进行。
3、污水处理-工业废水直接培菌法:某些工业废水,如罐头食品、豆制品、肉类加工废水,可直接培菌;另一类工业废水,营养成分尚全,但浓度不够,需补充营养物,以加快培养进程-污水处理。所加营养物品常有:淀粉浆料、食堂米泔水、面汤水(碳源);或尿素、硫氨、氨水(氮源)等,具体情况应按不同水质而定-污水处理。
微生物作为人工湿地除污的主体和核心, 在物质的矿化、硝化、反硝化等过程中起到关键作用(贺锋等, 2005).低温微生物jiduan微生物之一, 其所具有的*的生理功使其能适应环境, 因此, 研究这类微生物不仅具有重要的理论意义, 还在实际推广应用中产生了日益明显的经济效益和环境效益(李兵等, 2010).国外对低温微生物处理污水技术的研究起步较早, 主要是通过低温微生物去除污水中的油烃类、氯酚类、表面活性剂、氮和磷等达到净化水质的目的, 而且已经提出其低温适应性的分子机制及相关理论(Westlake et al., 1974; Atlas, 1981; Vacková et al., 2011; Shuo et al., 2013; Jarvinen et al., 1994).我国从20世纪90年代初开始针对低温微生物资源(主要是南极及深海微生物)的初步收集、调查与研究工作(冯虎元等, 2004; 李田等, 2006; 姜安玺等, 2002).但低温微生物在废污水处理过程中, 由于水力停留时间过长, 致使人工湿地对污水处理量受到限制.而且, 由于直接投放菌体, 游离微生物进入实际污染环境中后, 其生存繁殖和降解能力易受外界因素干扰, 降解作用难以充分发挥, 还会造成大量菌体流失, 难以控制其的处理效果. 微生物固定化技术是20世纪60年代后期迅速发展起来的一种新型技术, 具有实验速度快, 便于培养优势微生物种群, 微生物密度高、流失量少, 处理过程的稳定性高, 对环境耐受力强(如pH、温度、有毒物质等), 固液分离效果好, 处理过程便于控制等优点(王绍良等, 2011), 因而在诸多废水处理中体现出了非常大的优势, 并逐渐成为国内外生物科学及相关学科研究的热点.近年来, 很多学者采用竹炭、活性炭、棉纤维、疏水性聚氨酯泡沫等材料将微生物固定化后进行废水处理, 均取得了很好的处理效果(Xin et al., 2015; Ma et al., 2013; Lin et al., 2014; Li et al., 2012).生物炭作为一类新型环境功能材料近年来引起国内外学者的广泛关注, 它的孔隙结构可以为微生物提供栖息地, 使微生物能够耐受外界不良环境.
2.根据原生动物的形态变化:在一定条件下,原生动物能分泌胶质并形成膜将虫体包围起来,形成孢囊。大多数孢囊用以保护虫体免受不利的环境因素(如温度不适,pH值变化,食料短缺等)的影响。待环境转好时,虫体能恢复活力,脱孢而出。同样,鞭毛虫的鞭毛在条件不利时,鞭毛消失,条件适宜时,又重新生出。当曝气池中溶解氧降低到1 mg/L以下时,钟虫生活不正常,体内伸缩泡会胀得很大,顶端突进一个气泡,虫体很快会死亡;当pH值突然发生变化超过正常范围,钟虫表现为不活跃,纤毛环停止摆动,虫体收缩成团。所以虽然观察到钟虫数量较大,但虫体萎靡或变形时,则反映出细菌的活力在衰退,污水处理效果有变差的趋势。
3.根据原生动物的生殖方式:
原生动物的生殖方式有无性生殖和有性生殖。无性生殖即简单的细胞分裂,细胞核和原生质一分为二。在营养、温度、氧等环境条件良好的场合,原生动物就进行连续的无性生殖。当出现有性生殖(接合生殖)时,往往预示环境条件变差或种群已处于衰老期。
七、通过观察原生动物种类组成和数量估计有机负荷
纤毛类多样性指数与有机负荷呈负相关关系,且是线性函数。这样,画出纤毛类多样性指数与有机负荷之间的关系直线或相关函数模型,通过观察微生物的组成和数量,就能估计污水厂运行的有机负荷。
八、通过了解原生动物种类组成来预测出水水质
有柄纤毛虫的数量和质量是预测出水水质重要的原生动物。有壳变形虫、表壳虫、鳞壳虫、无柄纤毛虫、鞘居虫等能直接反映出水硝化的程度。
A2/O工艺作为当今常用的生物脱氮除磷工艺,已广泛应用于国内外大型污水处理厂,但是A2/O工艺的缺陷在于硝化菌、反硝化菌和聚磷菌在有机负荷、泥龄以及碳源需求上存在着矛盾和竞争,很难在单一系统中同时获得氮、磷的高效去除.陈永志等研究发现内循环对A2/O系统的反硝化除磷有影响.试验结合醛化纤维式组合填料的优势及对填料应用于生活污水脱氮除磷研究极少的现状,提出了在A2/O工艺的厌氧池、缺氧池和好氧池中添加醛化纤维式组合填料的设想,将传统活性污泥法与生物膜法相结合组成一套脱氮除磷的新系统.添加生物填料于好氧段可使池内的硝化细菌能够附着在填料上从而增加了污泥龄,提高硝化效率;缩短好氧段的停留时间,而将更长的时间用于厌氧段和缺氧段的释磷和吸磷作用,提高了除磷效率.于缺氧段可在载体环境下提高回流比,使反硝化聚磷菌富集,强化反硝化除磷现象,无需外加碳源,即可完成“超量”吸磷过程,适合低碳源污水的生化处理,使该系统能稳定运行并更好的进行脱氮除磷.
原生动物对细菌有捕食作用:1) 此作用可以优化基质中的碳氮磷比率。原生动物的捕食可释放、整合死细菌中的非活性营养物质,加快水生生态系统中P的矿化,是细菌群落更快生长和保持更高活力;
2) 优化细菌群落。当盖虫、小口钟虫和梨形四膜虫等纤毛虫存在时,大肠杆菌的密度减少95%,说明原生动物的捕食有利于增殖较快的细菌生长。捕食作用在活性污泥培养初期,原生动物的捕食有利于选择细菌的生存,可以降低病原菌的浓度提高出水水质等;
3) 原生动物的捕食改变细菌形态与生长方式;
4) 原生动物的捕食促进营养物质和氧气的扩散;
5) 原生动物的捕食促进絮状分离。草履虫等纤毛虫和一些鞭毛虫向胞外分泌可溶性的糖类,能促进颗粒形成絮凝。
四、活性污泥中的微生物变化
1. 活性污泥生物相的季节变化:
春:钟虫属和楯纤虫属;
夏:累枝虫属和楯纤虫属;
秋:楯纤虫属和钟虫属;
冬:钟虫属和盖虫属;
2. 不同系统中的生物相变化污泥中的生物相
1) 曝气池活性污泥中优势种属是纤毛类;
2) 二沉池都是以藻类为中心的污泥;
3) 沉淀池中优势种属为颤藻类和毛枝藻;
序批式活性污泥法(SBR)工艺由于具有生化反应推动力大, 脱氮除磷效果好, 耐冲击负荷强, 工艺简单, 运行方式灵活和防止污泥膨胀等优点, 已成为污水生物脱氮的主流工艺之一.胞外聚合物(extracellular polymeric substance, EPS)是在一定环境条件下由微生物(主要是细菌), 分泌于体外的一些高分子聚合物.主要成分与微生物的胞内成分相似, 是一些高分子物质, 如蛋白质(PN)、多糖(PS)和核酸(DNA)等聚合物. EPS普遍存在于活性污泥絮体内部及表面, 具有重要的生理功能, 可将环境中的营养成分富集, 通过胞外酶降解成小分子后吸收到细胞内, 还可以抵御杀菌剂和有毒物质对细胞的危害[2, 3].根据EPS空间位置不同, 分为紧密附着在细胞壁上的孢囊聚合物——紧密型EPS(TB-EPS)和以胶体和溶解状态松散于液相主体中的黏性聚合物——松散型EPS(LB-EPS).国内外学者研究表明, 温度对生物脱氮效果和EPS产量均有重要影响, 该方面研究总结为以下3个方面:① 单一研究温度对生物脱氮效果的影响.汪志龙以合成废水为研究对象, 以丙酸钠作为单一碳源, 分别设置温度为5、15、25、35℃的4组序批式反应器考察了温度对单级好氧工艺生物脱氮除磷性能的影响. Guo等在5~30℃条件下, 研究了同时氮化和脱硝(SBR-SND)顺序间歇反应器的性能. Hendrickx等采用UASB, 以实际生活污水为研究对象, 探究了10℃和20℃条件下氮的去除. ② 单一考察了温度对EPS产量及组分的影响.张宝良等研究了3种温度(-20℃, 室温, 4℃)条件下, 市政污水污泥、可乐废水好氧污泥和可乐废水厌氧污泥3种污泥的EPS产量. Song等研究了常温(28℃)和低温(10℃)条件下EPS产量对活性污泥脱水性能的研究. Gao等研究了在30、20和10℃条件下, EPS在膜污染中的作用. ③ 同步研究了温度对生物脱氮效能及EPS的影响.张兰河等考察了4种温度(10±2)、(17±2)、(22±2)、(30±2)℃对A2O工艺脱氮速率及胞外聚合物的影响, 随着温度的升高, 总氮(TN)和COD去除速率逐渐上升, EPS质量浓度先降低后升高.宋成康等研究了温度降低对厌氧氨氧化脱氮效能及污泥EPS的影响, 在温度33℃→25℃→20℃→15℃范围内, EPS总含量及各组分均与温度成负相关.在生物脱氮过程中, 活性污泥是实现氮去除的功能主体, EPS是活性污泥的重要组成部分.因此, 同步考察温度对生物脱氮效能和EPS的影响, 可深入解析基于微生物EPS变化角度揭示生物脱氮本质.此外, 相关报道大多基于短期实验获得研究结果, 因此较难反映温度对EPS变化影响规律, 难以获得准确的EPS与生物脱氮相关性.
研究活性污泥中原生动物的目的 : 要了解污水处理过程的变化或处理水的好坏,好直接研究分析细菌的生长情况。但是对于细菌的观察、分类鉴定的时间很长,不能及时起指导生产的指示和预报作用。而原生动物与细菌之间存在相互依存的功能关系;原生动物个体大,便于观察;对于环境变化比细菌敏感,更早更容易反映环境的变化。直接观察原生动物的种类组成、数量、生长和变化状况,也能反映出细菌的生长和变化情况。所以利用原生动物和后生动物的演替,可以判断水质和污水处理程度,判断污泥培养成熟程度;根据原生动物的种类,判断活性污泥和处理水质的好坏;根据原生动物在环境中改变个体形态及过程,判断水质变化和运行中出现的问题。即利用原生动物间接地评价污水处理过程和处理效果的好坏,起指导生产的作用。
三、原生动物与细菌的相互关系对水处理的作用
1. 原生动物具有促进细菌活力,提高出水水质的功能,其作用仅次于细菌。原生动物群落的组成及数量由环境因子及运行条件决定。
原生动物分泌生长因子和降解胞外聚合物,促进细菌的生长。细菌生长需要和氨基酸等生长因子,添加氨基酸可促进动胶杆菌的生长,而鞭毛虫和纤毛虫能够合成刺激细菌生长的物质,污水中的细菌能降解其他细菌的胞外聚合物,而动胶杆菌的胞外聚合物很难被其它微生物降解,但可以被原生动物降解。
CANON工艺具有脱氮途径短、节省曝气量、无需外加碳源、温室气体产量少等优点, 成为了目前具前景的污水脱氮工艺. CANON工艺适合处理高温、高氨氮污水, 而生活污水是常温、低氨氮水质.如何将CANON工艺推广到市政污水处理厂中是以来的难点[5].目前, 国外CANON工艺的研究主要以高氨氮废水处理为主, 国内虽然有常温低氨氮环境中运行CANON工艺的报道, 也仅局限于人工配水和短期运行, 实际污水处理厂中运行CANON工艺的研究极少.
常温低氨氮环境中, CANON工艺的难点在于硝化细菌的抑制.如果硝化细菌过量增殖, 将会出现总氮去除率下降、出水总氮超标的现象.在常温、低氨氮条件下, 只调节DO从而抑制NOB活性已被证明难以实现.因此, 在工程应用中, 需要通过其他策略抑制硝化细菌的活性.有研究表明, 在CANON生物膜反应器中, NOB主要分布在生物膜的外层.对生物膜进行冲洗, 理论上洗脱生物膜表面的NOB, 但在实践中研究较少.
在废水好氧处理过程中,主要依靠好氧微生物降解有机物,使这些高能位的有机物质经过一系列的生化反应,逐级释放能量,终以低能位的无机物稳定下来,达到无害化要求或返回自然环境进一步处置。一、在水处理中常见的原生动物有三类:
1. 肉足类,其细胞质可伸缩变动而形成伪足,作为运动和摄食的胞器,典型的肉足类为变形虫属、简便虫属、表壳虫属和鳞壳虫属等;
2. 鞭毛类,具有一根或一根以上的鞭毛。鞭毛长度与其体长大致相等或更长些,是运动器官,鞭毛虫又可分为植物性鞭毛虫和动物性鞭毛虫,常见的植物性鞭毛虫有滴虫属、屋滴虫属和眼虫属等,常见的动物性鞭毛虫有波豆虫属、尾波虫属等;
3. 纤毛类,原生动物周身表面或部分表面具有纤毛,作为行动或摄食的工具,具有胞口、口围、口前庭和胞咽等吞食和消化的细胞器官,分为游泳型和固着型两种,游泳型包括漫游虫属、草履虫属、肾形虫属、斜管虫属等,固着型常见的有钟虫属、累枝虫属、盖虫属、聚缩虫属、纤虫属和壳吸管虫属等;
4. 除上述三类外,在水体中还有孢子纲和吸管纲。
将废水引入调节池,调节废水pH为7.0-7.5。废水经污水泵送至水解池,使废水产生水解反应去除部分较容易降解的有机污染物,还可以将较难降解的大分子有机物分解为较简单的小分子有机物。经水解处理后,废水COD有所降低,而BOD5有所增加,使BOD5/COD比值提高,池底产生的污泥借污泥泵站送至压滤机,排出废水返至调节池,污泥渣作肥料。经水解处理废水流出接触氧化池,氧化池由池体、填料及曝气装置等部分组成。池体为矩形的钢筋混凝土构筑物,池型采用推流式,生物膜受到迅速上升气流的强烈搅拌加速更新,促进氧的释放,使生物保持较高的活性。经部分接触氧化后的废水进入二沉池。当废水进入二沉池中心管后,由下部流入池内,自下而上流动,澄清后的处理水从池上部溢流而出,废水出水水质达到排放标准要求,该方法CODcr去除率为93%,BOD5去除率为96%,SS去除率为82%,废水去污成本1.0元/t。