循环供水装置为您介绍循环供水系统的设计 摘要:关键词:循环供水系统选择应地制宜。工业项目中,循环供水系统不仅占给、排水工程费用比例较大,而且也较容易出现问题,由此带来的资源浪费以及对运行管理带来的诸多不便是不容忽视的。下面就几种具体的情况和实例,谈谈粗浅的认识。有的循环冷却供水系统,其冷水泵采用变频控制供水,而其热水泵则采用恒速供水。当用水设备不能满负荷运行时,结果可想而知:后者(热水池)入不敷出,水位逐渐降低,甚至被抽空,而前者(冷水池)则供大于求,源源不断地溢流,造成水资源的严重浪费。由于水池一般都在地下,其浪费具有隐蔽性,不易被发觉,因此在设计中更应引起大家的重视和警觉。针对这种情况,一个简单可靠的办法是:冷水池溢流水进入热水池,前者多得到的,原物奉还给后者,使循环冷却供水系统的水量达到自然平衡。
一般情况下,水泵是从较低的位置,将水抽送至较高的位置,水泵不运行时,其出水管上的止回阀自动关闭,水泵是不通流的,但并不是说,任何情况下,当水泵不运行时,就没有流量通过。对于循环供水系统,当水泵从较高的位置抽水(比如冷却塔设在低层建筑屋面,而水泵设置在地面),将水输送至较低的用水设备时,要分两种情况:其一,当回水利用余压,回至原处时,水泵不运行,就没有流量通过。其二,当回水无压,回流至位置较低的热水池时,如果用水设备进口上的阀门未关,当水泵不运行时,仍然有流量通过(位差,即重力势能在自发工作),只不过是以远低于设计流量的小流量通过罢了。这时会出现大家谁也不愿看到的一幕:热水池不断溢流,自来水则通过浮球阀不停地补进,一晚上下来,得有多少水白白地“悄悄”溜走。碰到这种情况,应将冷却塔置于地面高度,当无场地或有外观要求,只能设置在屋面时,应同时设置冷水池,以便将冷水泵吸水管的位差(势能)消除。当然,如果能保证停泵即关阀(冷水泵进、出口或设备进口上的任何一处的阀门),这种情况也是可以避免的,但这无疑增加了管理难度,可靠性也会降低。 循环水系统补充水,如直接补到冷却塔底盘内,水面的波动导致浮球阀忽悠忽悠的,折腾久了,不坏也难。事实上,补水浮球阀是易损件之一。当采用液位自动控制,通过水泵补水时,液位控制浮球也会由于水面的飘忽不定,控制精度大大降低。如能加个补水箱,则象给浮球阀或液位控制浮球开辟了一个“避风港”,其工况相对平稳多了。循环水系统的“体外”补水。 循环水泵设在冷水机组前还是后? 如果冷却塔设在地坪上或屋顶高度有限,循环水泵自然是设在冷水机组前。如果冷却塔高高在上,再把循环水泵设在冷水机组前,将使设备的循环管路承受较高的水压,设备的实际承压能力不能忽视。这时,为安全起见,循环水泵的设置位置宜在冷水机组之后。 曾有一个工程项目,试运行时,空调冷冻机组频频报警停机。经与设备生产厂家“会诊”,方知原委。原来,为了提高市场竞争力,生产厂家经过改良,使正常的启动时间(室内达到设计温度所需的时间)大大缩短,成为该产品的亮点和卖点,也恰恰是该亮点成为设备正常运行的障碍。启动时间的缩短,代价是启动时间内短期运行负荷的大幅提高,达到设计温度后,运行负荷才降至正常水平。由于生产厂家提供的产品说明书中给出的循环冷却水量为正常运行状况下的流量值,导致启动时冷却水温升远超过设计值,冷却塔降不了那么多,致使冷冻机组冷却进水温度逐级升高,达到设定的警戒温度便出现报警停机。查明原因后,在原设计冷却塔底盘已加深的基础上,又并联了一座水箱,使冷却塔出水与水箱内足量的贮水缓冲,大大遏制了冷冻机组进水温度的升高势头,使启动得以正常实现。为了充分发挥水箱贮水的缓冲效应,水箱进、出水管位置应尽量对角布置。水箱容积应在满足正常启动的前提下加以控制。 循环水系统的无压开放式回水,水质保证很重要,尤其是对于软水循环冷却供水系统。回水管路上如设置普通的检查井,无疑于“开门揖盗”,雨水、泥水、地下水都有可能渗透进入回水系统,降低循环供水系统水质。可将回水系统改为封闭式,将检查井改为检查口井,并在每个井内加设一根通气管,以不改变其重力流状态。冷却塔在屋面的设置位置,除了要考虑冷却塔对周围环境的影响,如应远离对噪声环境要求较高的区域,并保证漂水不影响周围窗户的正常使用外,还应充分考虑周围环境对冷却塔的不利影响,应能保证其上方的湿热空气及时扩散,不产生回流影响,并保证能吸入足量的未被污染的冷空气。从这个角度出发,冷却塔进风侧距周围实体的距离不宜小于冷却塔进风口高度的2倍,或冷却塔高度的2/3,并不宜布置在容易形成气流滞流区的“L”形、“U”形、“E”形、“H”形建筑物屋面的凹窝处,且尽量远离热源(如散热器)、废气(如卫生间风道、排水系统伸顶通气管)、烟气(如厨房烟道)的排放口,并位于这些热源和污染源的上风侧。必要和可能时,可将通气管、烟道和风道的排放口引至它处。当水质不洁时,比如开式循环水系统,或某些低质(经简单沉淀处理的地表水或中水)用水场所,当部分设备需要减压时,不宜采用减压阀,以防减压阀传导管路因经常发生堵塞而影响正常使用。常遇到循环水系统要求水质不一样的情形,比如一个要求软水,一个自来水便可。一般都将其分为两个独立的、不同水质的供水系统。但当水质要求较低的系统水量相比很小时,为了节省占地,节约一次投资,节省运行费用,方便运行管理,循环供水系统统一采用较高的水质,即合并采用一个软水循环系统。 空调循环水系统与工业循环水系统宜分开设置。空调循环水系统一般只在夏季运行,如与工业循环水系统合并设置,在其它季节,冷却塔、冷却水泵如未按各自流量配置,则很难调配。另外,给水水质、水温要求、水压要求、内部水损、供水方式、供水安全等方面也有诸多不同,分开设置可减少互相制约和影响。 当循环供水系统增加用水设备,或用水设备用水量有所增加,使系统循环用水量超过原有设计供水能力,但不是太多时,改造、更换或增加冷却塔、循环水泵,一般比较容易实现。但循环系统管路有时却比较棘手,尤其是管线较长,穿越厂区多条道路时。供水管倒不太成问题,水泵扬程进行适当的提升就行了。回水管重新敷设似乎不太现实和经济,有时工期也不允许。“车到山前必有路”,流不及,水位便自然雍高,位势随之自然提高。其结果,虽然动不了自然坡度,却造就了一个水力坡度。 循环水补充水管由外网直接补水时,宜单独设置,其上不宜再接出其它用水,或从其它供水立管延伸供水,以防循环水补充水管因季节原因不用时污染饮用水质。 空调循环供水系统补水泵与生活供水泵宜分开设置。由于空调循环供水系统有季节性,当季节变换时,水泵可能不在高效段运行。同时浮球阀也是易损件,分开后,可取消浮球阀,改为由冷却塔底盘或循环水池、补水箱内的水位自动控制补水。 当循环供水系统服务范围大、管路较长时,一定要考虑管路的压力平衡问题,以防水量分配的过度不均匀甚至因短路而造成事故。一般应设计为同程式供、回水系统。循环水同程式循环管路布置。当回水采用开放式无压回水时,则无必要采用同程式。有的设备因内部泄了压(如喷雾冷却),出水无压。当系统大部分回水有压时,为了节能,循环供水系统应分为有压回水(直接上塔)和无压回水两个系统。但当有压回水只占很小一部分时,为了节省占地,节约一次投资,节省运行费用,循环供水系统统一采用开式回水系统。 当部分设备距离较远,用水量较小,且出水有压,而下游大量用水设备出水无压,整个系统采用无压回水时,为减小上游管道管径,并减小整个系统管道埋深,进而提高热水池标高,节约投资和运行费用,可采用有压和无压混用,即上游管段采用有压回水,下游管段采用无压回水。 当某些用水量较大的有压出水设备处于无压回水系统管段的下游时,其形成的雍水会阻隔上游回水的平稳下行。应对其减小消能处理,或单独回热水池。 循环供水与循序供水虽然都是水的重复利用,但前者是同一使用主体的重复使用,是需要付出代价的(冷却塔、水泵等的一次投资和经常性的运行、管理费用),而后者则是不同使用主体的重复(延续)使用,基本上是“空手套白狼”,更具优势。因此,根据不同的工程实际,确定是采用循环供水还是循序供水,对于降低投资规模,减少运行费用,简化管理。