品牌
其他厂商性质
所在地
Output beam sizes 2x2", 4x4”, 6x6” , 8x8", and 12 x 12"
Factory certified Class AAA CW systems
Calibration certificate validating Class AAA performance for all 3 standards: IEC, ASTM and JIS
Long-lived, highly reliable instruments designed specifically for 24/7 production environments
Easy lamp replacement
Non-reflective black finish reduces stray light
Temperature sensors and interlocks ensure operator safety
Leveraging over 40 years of experience in light source and power supply design, Newport’s Oriel® brand is proud to introduce the latest innovation in solar
simulators – the Oriel Sol3A™ Class AAA Solar Simulator family. The product family includes:
Model 94123A = 12 x 12 inch Beam Size
Model 94083A = 8 x 8 inch Beam Size
Model 94063A = 6 x 6 inch Beam Size
Model 94043A = 4 x 4 inch Beam Size
Model 94023A = 2 x 2 inch Beam Size
All Oriel Sol3A solar simulators are certified to IEC 60904-9 Edition 2 (2007), JIS C 8912, and ASTM E927-5 standards for Spectral Match, Non-Uniformity of
Irradiance, and Temporal Instability of Irradiance. By convention, Class AAA is reported with the first letter representing Spectral performance, the second
letter Uniformity of Irradiance, and the third letter Temporal Stability. The Oriel SOL 3A solar simulators all use a single lamp design to meet not one or two, but
all three performance criteria without compromising the 1 Sun output power, providing true Class AAA performance. The Oriel Sol3A uses a black non-
reflective finish to minimize stray light and incorporates captive screws for all panels requiring user access to facilitate lamp replacement, alignment, and filter
changes. Safety interlocks prevent inadvertent exposure to UV light. The Oriel Sol3A rugged design is backed by the Newport Corporation''s world wide
organization.
IEC 60904-9 Edition 2 (2007) Photovoltaic Devices – Part 9: Solar Simulator Performance Requirements
JIS C 8912-1998, Solar Simulators for Crystalline Solar Cells and Modules
ASTM E 927-05 (2005) Specification for Solar Simulation for Terrestrial PV Testing
Organization | IEC | JIS | ASTM |
Performance Parameter | 60904-9-2007 | C 8912 | E92-05 |
Spectral Match (fraction of ideal percentage) | 0.75 - 1.25 | 0.75 - 1.25 | 0.75 - 1.25 |
Non-Uniformity of Irradiance | 2.0% | 2% | |
Temporal Instability | 0.5% STI | 2% | |
|
The standards define the spectral match of a solar simulator as a percentage of the integrated intensity in 6 spectral ranges (listed in Table 2). Any deviation from the specified percentages must then lie within a range that determines the class of the simulator. For Class AAA, this range is 0.75 to 1.25 times the ideal percentage.
Spectral Range (nm) | Total Irradiance Range (%) | Ideal % |
---|---|---|
400 - 500 | 13.9 - 23.1 | 18.5 |
500 - 600 | 15.1 - 25.1 | 20.1 |
600 - 700 | 13.7 - 22.9 | 18.3 |
700 - 800 | 11.1 - 18.5 | 14.8 |
800 - 900 | 9.2 - 15.3 | 12.2 |
900 - 1100 | 12.1 - 20.1 | 16.1 |
Fig. 1 Oriel Sol3A Spectral Match with AM 1.5G
spectral correction filter meets IEC, JIS, ASTM Class A
requirements to for spectral match.
The irradiance uniformity over the work area is the most difficult Class AAA requirement to achieve and maintain. Hot spots can lead to significant errors in measured cell efficiency and can cause inaccurate binning of cells. The Class AAA spatial non-uniformity performance standard is designed to minimize the impact of hot spots and has a very stringent requirement of ≤2%. The plot below shows the uniformity of the irradiance across a typical simulator working area. Each unit will come with a plot of irradiance non-uniformity. The working distance ranges for each simulator are listed in Table 3.
Model | Size | Working Distance Range (Inches) |
---|---|---|
94023A | 2 x 2 (50.8 x 50.8) | 12.0 ±0.5 |
94043A | 4 x 4 (101.6 x 101.6) | 4.0 ±0.5 |
94063A | 6 x 6 (152.4 x 152.4) | 5.0 ±0.5 |
94083A | 8 x 8 (203.2 x 203.2) | 15.0 ±0.5 |
94123A | 12x12 (304.8 x 304.8) |