品牌
其他厂商性质
所在地
主要功能
单独或同步测量叶绿素荧光和 P700
两个光系统的诱导动力学曲线(包括快相和慢相)
两个光系统的快速光曲线和光响应曲线
淬灭分析、暗驰豫分析
典型的 P700 曲线测量
通过叶绿素荧光和 P700 的同步测量获知两个光系统的电子传递动力学、电子载体库的大小、围绕 PSI 的环式电子传递动力学等
测量参数
PS II参数:Fo, Fm, F, Fm’, Fv/Fm, Y(II) 即 △F/Fm’, Fo’, qP, qL, qN, NPQ, Y(NPQ), Y(NO) 和 ETR(II) 等
PS I参数:P700, Pm, Pm’, P700red, Y(I), Y(ND), Y(NA) 和 ETR(I) 等
其他测量参数:Post-Illumination(鼓包),PQ-Pool(PQ库)等
应用领域
特别适合于在野外现场进行深入的 PSII 和 PSI 活性测量,是植物生理学、植物生态学、农学、林学、园艺学、植物逆境研究的强大助手。光纤版设计更轻便,便于携带,另外,光纤版尤其适合附着样品,如苔藓,地衣的样品的原位测量。
主要技术参数
P700 双波长测量光:LED,830 nm 和 875 nm
PSII 荧光测量光:LED,460 nm 或 620 nm
红色光化光:LED阵列,635 nm;连续光强 4000 μmol m-2 s-1
蓝色光化光:LED,460 nm;连续光强 500 μmol m-2 s-1
单周转饱和闪光(ST):200000 μmol m-2 s-1,5~50 μs 可调
多周转饱和闪光(MT):20000 μmol m-2 s-1,1~1000 ms 可调
远红光:720 nm
选购指南
一、高等植物叶片基本款
系统组成:光纤版主机,光纤,光适应叶夹,暗适应叶夹,软件等
注意:便携式光纤型双通道调制叶绿素荧光仪光化光兼具红光和蓝光
Dual-PAM/F 基本款 |
二、悬浮样品测量基本款
系统组成::通用型主机,光纤,悬浮液测量用样品池,软件等。
注意:选购悬浮样品测量基本款时可以不选购光适应叶夹,建议选配磁力搅拌器。
Dual-PAM/F 悬浮样品测量基本款 |
同步测量 PSII(红色)和 PSI(蓝色)的诱导曲线 | 同步测量 PSII(红色)和 PSI(蓝色)的光响应曲线 | 典型的 P700 测量曲线 |
打开饱和脉冲时叶绿素荧光信号(红色)和 P700(蓝色)信号变化 | 以线性时间测量的荧光快速动力学曲线 | 以对数时间测量的荧光快速动力学曲线 |
三、其他可选附件
1,2060-B:拟南芥叶夹,60度角光适应叶夹,与独立微型光量子/温度传感器 2060-M 连用进行测量,特别适于测量拟南芥类小叶片。使用前提是需配置 2060-M。
2,2060-M:微型光量子/温度传感器,测量 PAR 和温度,可连接 MINI-PAM 后独立使用,多与 2060-B 结合使用。
3,MKS-2500:为 KS-2500 配置的磁力搅拌器,专为 KS-2500 配置,装在 KS-2500 下方,带动 KS-2500 内部的转子旋转,对液体样品进行搅拌。
4,2030-B90:90 度角光纤适配器,安装在 2030-B 或 2060-B 上,使光纤与样品成 90 度角。
产地:德国WALZ
参考文献
数据来源:光合作用文献 Endnote 数据库,更新至 2016 年 9 月,文献数量超过 6000 篇
原始数据来源:Google Scholar
Zhou, W., et al. (2016). "Effects of sodium bicarbonate concentration on growth, photosynthesis, and carbonic anhydrase activity of macroalgae Gracilariopsis lemaneiformis, Gracilaria vermiculophylla, and Gracilaria chouae (Gracilariales, Rhodophyta)." Photosynthesis Research: 1-12.
Yamori, W., et al. (2016). "A physiological role of cyclic electron transport around photosystem I in sustaining photosynthesis under fluctuating light in rice." Scientific Reports 6.
Yamamoto, H., et al. (2016). "Artificial remodelling of alternative electron flow by flavodiiron proteins in Arabidopsis." Nature Plants 2: 16012.
Wang, H., et al. (2016). "The sporulation of the green alga Ulva prolifera is controlled by changes in photosynthetic electron transport chain." Scientific Reports 6: 24923.
Xue, X., et al. (2016). "Development of the photosynthetic apparatus of Cunninghamia lanceolata in light and darkness." New Phytologist: n/a-n/a.
Shimakawa, G., et al. (2016). "Diversity in photosynthetic electron transport under [CO2]-limitation: the cyanobacterium Synechococcus sp. PCC 7002 and green alga Chlamydomonas reinhardtii drive an O2-dependent alternative electron flow and non-photochemical quenching of chlorophyll fluorescence during CO2-limited photosynthesis." Photosynthesis Research: 1-13.
Tadini, L., et al. (2016). "GUN1 controls accumulation of the plastid ribosomal protein S1 at the protein level and interacts with proteins involved in plastid protein homeostasis." Plant Physiology: pp. 02033.02015.
Takagi, D., et al. (2016). "Photorespiration provides the chance of cyclic electron flow to operate for the redox-regulation of P700 in photosynthetic electron transport system of sunflower leaves." Photosynthesis Research: 1-12.
Leonelli, L., et al. (2016). "Transient expression in Nicotiana benthamiana for rapid functional analysis of genes involved in non-photochemical quenching and carotenoid biosynthesis." The Plant Journal: n/a-n/a.
Meneghesso, A., et al. (2016). "Photoacclimation of photosynthesis in the Eustigmatophycean Nannochloropsis gaditana." Photosynthesis Research: 1-15.
Huang, W., et al. (2016). "PSI photoinhibition is more related to electron transfer from PSII to PSI rather than PSI redox state in Psychotria rubra." Photosynthesis Research: 1-8.
Mishanin, V. I., et al. (2016). "Light acclimation of shade-tolerant and light-resistant Tradescantia species: induction of chlorophyll a fluorescence and P700 photooxidation, expression of PsbS and Lhcb1 proteins." Photosynthesis Research.
Benson, S. L., et al. (2015). "An intact light harvesting complex I antenna system is required for complete state transitions in Arabidopsis." Nature Plants 1: 15176.
Gao, F., et al. (2015). "NdhV Is a Subunit of NADPH Dehydrogenase Essential for Cyclic Electron Transport in Synechocystis sp. Strain PCC 6803." Plant Physiology: pp. 01430.02015.
Gerotto, C., et al. (2015). "In Vivo Identification of Photosystem II Light Harvesting Complexes Interacting with PHOTOSYSTEM II SUBUNIT S." Plant Physiology 168(4): 1747-1761.
Giovagnetti, V., et al. (2015). "Assessment of the impact of photosystem I chlorophyll fluorescence on the pulse-amplitude modulated quenching analysis in leaves of Arabidopsis thaliana." Photosynthesis Research: 1-11.
Iwai, M., et al. (2015). "Light-harvesting complex Lhcb9 confers a green alga-type photosystem I supercomplex to the moss Physcomitrella patens." Nature Plants 1(2).
Timm, S., et al. (2015). "Mitochondrial Dihydrolipoyl Dehydrogenase Activity Shapes Photosynthesis and Photorespiration of Arabidopsis thaliana." The Plant Cell: tpc. 15.00105.
Tsabari, O., et al. (2015). "Differential effects of ambient or diminished CO2 and O2 levels on thylakoid membrane structure in light‐stressed plants." The Plant Journal 81(6): 884-894.
Zhao, J., et al. (2015). "NdhQ Is Required to Stabilize the Large Complex of NADPH Dehydrogenase in Synechocystis sp. Strain PCC 6803." Plant Physiology: pp. 00503.02015.
Zivcak, M., et al. (2015). "Repetitive light pulse-induced photoinhibition of photosystem I severely affects CO2 assimilation and photoprotection in wheat leaves." Photosynthesis Research: 1-15.