热式质量流量计是利用流体流过外热源加热的管道时产生的温度场变化来测量流体质量流量,或利用加热流体时流体温度上升某一值所需的能量与流体质量之间的关系来测量流体质量流量的一种流量仪表。
用途 1、钢铁厂,焦化厂煤气流量测量;
2、锅炉空气流量,测量二次风量;
3、烟囱排出的烟气流量测量;
4、水处理中瀑气流量测量;
5、水泥,卷烟,玻璃厂生产过程中气体流量测量;
6、压缩空气流量测量;
7、天然气,煤气,液化气,火炬气,氢气等气体流量测量。
分类 热式质量流量计根据热源及测温方式的不同可分为接触式和非接触式两种。
1.接触式热式质量流量计
这种质量流量计的加热元件和测温元件都置于被测流体的管道内,与流体直接接触,常被称为托马斯流量计,适于测量气体的较大质量流量. 由于加热及测量元件与被测流体直接接触,因此元件易受流体腐蚀和磨损,影响仪表的测量灵敏度和使用寿命。测量高流速、有腐蚀性的流体时不宜选用,这是接触式的缺点。
2.非接触式热式质量流量计
这种流量计的加热及测温元件都置于流体管道外,与被测流体不直接接触,克服了接触式的缺点。
原理 热式质量流量计(Thermal Mass Flowmeters,简称TMF)在国内习称量热式流量计,是利用流体流过外热源加热的管道时产生的温度场变化来测量流体质量流量,或利用加热流体时流体温度上升某一值所需的能量与流体质量之间的关系来测量流体质量流量的一种流量仪表。一般用来测量气体的质量流量。具有压损低;流量范围度大;高精度、高重复性和高可靠性;无可动部件以及可用于极低气体流量监测和控制等特点. 利用加热流体的热量(或温度)变化测量流体的质量流量已有很长的历史。早期的TMF直接将加热线圈和测温元件放入流体中与流体直接接触,是一种接触式流量计,由于不能解决嘴蚀和磨损以及防爆等问题,使它的工业应用受很大的限制。托马斯流量计是这种流量计的代表,主要用来测量较大流量的气体质量流量;到20世纪50年代,人们提出了一种与流体不接触的边界层流量计,克服了接触式流量计的缺点,但测量结果易受介质参数(如导热系数、比热容、粘度等)的影响,可以用来测量较大的液体流量;到70年代,基于测量流体温度分布的热分布型TMF,由于其的优点在国内外得到了很快的发展,用来测量气体的微小流量,随着科技的发展,经过对流量计结构上的重新设计,在接触式流量计的基础上,人们提出了一种浸人型的TMF,也得到了很快的发展,可以用来测量较大管径的气体流量。综上所述,TMF是一种主要用来测量气体质量流量的直接式质量流量计。
热式质量流量计:利用传热原理检测流量的仪表,即利用流动中的流体与热源(流体中加热的物体或测量管外加热体)之间热量交换关系来测量流量的仪表。过去我国习称量热式流量计。
基本原理:通过测量气体流经流量计内加热元件时的冷却效应来计量气体流量的。气体通过的测量段内有两个热阻元件,其中一个作为温度检测,另一个作为加热器。温度传感元件用于检测气体温度,加热器则通过改变电流来保持其温度与被测气体的温度之间有一个恒定的温度差。当气体流速增加,冷却效应越大,使须保持热电阻间恒温的电流也越大。此热传递正比于气体质量流量,即供给电流与气体质量流量有一对应的函数关系来反映气体的流量。
热式质量流量计的基本原理是利用外部热源对管道内的被测流体加热,热能随流体一起流动,通过测量因流体流动而造成的热量(温度)变化来反映出流体的质量流量。
当流体成分确定时,流体的定压比热为已知常数。因此由上式可知,若保持加热功率恒定,则测出温差便可求出质量流量;若采用恒定温差法,即保持两点温差不变,则通过测量加热的功率也可以求出质量流量。由于恒定温差法较为简单、易实现,所以实际应用较多。这种流量计多用于较大气体流量的测量。
为避免测温和加热元件因与被测流体直接接触而被流体玷污和腐蚀,可采用非接触式测量方法,即将加热器和测温元件安装在薄壁管外部,而流体由薄壁管内部通过。非接触式测量方法,适用于小口径管道的微小流量测量。当用于大流量测量时,可采用分流的方法,即仅测量分流部分流量,再求得总流量,以扩大量程范围。
热式质量流量计。当流体静止时,热源两端对称放置的温差电偶指示温度相等。 常用的旁通管式质量流量计把管路用细管分成无数小型管路,再把其中一个管路引出来,把传感器置于旁通管外,此方法测量元件与介质隔开,但是响应速度和精度稍低,通过加工技术的进步,流量计的精度和重复性都有了很高的进步。
优点 热式质量流量计可测量低流速(气体0.02~2m/s)微小流量;浸入式热式质量流量计可测量低~中偏高流速(气体2~60m/s),插入式热式质量流量计更适合于大管径。 [1]
热式质量流量计无活动部件,无分流管的热分布式仪表无阻流件,压力损失很小;带分流管的热分布式仪表和浸入性仪表,虽在测量管道中置有阻流件,但压力损失也不大。
热式质量流量计使用性能相对可靠。与推导式质量流量仪表相比,不需温度传感器,压力传感器和计算单元等,仅有流量传感器,组成简单,出现故障概率小。
热分布式仪表用于H2 、N2 、O2、CO 、NO等接近理想气体的双原子气体,不这些气体专门标定,直接就用空气标定的仪表,实验证明差别仅2%左右;用于Ar、He等单原子气体则乘系数1.4即可;用于其他气体可用比热容换算,但偏差可能稍大些。
气体的比热容会随着压力温度而变,但在所使用的温度压力附近不大的变化可视为常数。
缺点 热式质量流量计响应慢。
被测量气体组分变化较大的场所,因cp值和热导率变化,测量值会有较大变化而产生误差。
对小流量而言,仪表会给被测气体带来相当热量。
对于热分布式热式质量流量计,被测气体若在管壁沉积垢层影响测量值,必须定期清洗;对细管型仪表更有易堵塞的缺点,一般情况下不能使用。
对脉动流在使用上将受到限制。
液体用热式质量流量计对于粘性液体在使用上亦受到限制。