上海依肯机械设备有限公司

环保在线免费会员

收藏

纳米SiO2 /环氧树脂复合材料研磨分散

时间:2014-08-17      阅读:2016

              纳米SiO2 /环氧树脂复合材料研磨分散

 

纳米二氧化硅(nano-SiO2)为无定型白色粉末(团聚体),是一种无毒、无味和无污染的非金属功能材料。由于其具有较大的比表面积,并且表面存在着羟基,故具有奇异或反常的特性,如表面效应、小尺寸效应、量子尺寸效应及宏观量子隧道效应,因而在橡胶、塑料、胶粘剂和涂料等领域中应用广泛[1-3]。目前, 研究 nano-SiO2的制备方法已成为纳米技术领域的一大热点。

环氧树脂(EP)是一类典型的热固性树脂,在聚合物复合材料中应用。 由于 EP 具有优异的粘接性能、力学性能和电绝缘性能,并且收缩率和成本较低,故在胶粘剂、密封胶和涂料等领域中得到广泛应用[4-5]。 但是,EP 固化物因交联度过高而脆性较大,从而限制了其在某些领域中的应用[6]。因此,在保证 EP 优异性能的前提下, 对其进行增韧改性已成为近年来该领域的研究热点。

Nano-SiO2粒子因存在着表面缺陷和非配对原子多等特点, 与聚合物发生物理或化学结合的可能性较大,故可用于增强与聚合物基体的界面结合,提高聚合物的承载能力, 从而达到增强增韧聚合物的目的。

目前用于纳米SiO2改性聚合物的方法很多,主要有原位聚合法法、溶胶一凝胶法、共混法。

3.1原位聚合法

即在位分散聚合,该法是应用在位填充技术,将纳米SiO2在单体中分散均匀后,再进行聚合反应,原位聚合法的特点是既能使纳米SiO2粒子均匀分在聚合物中,又保持了粒子的纳米属性,而且原位聚合法通常是一次聚合成型,无需进一步热加工,因此避免了热加工带来降解的影响,保证了纳米SiO2-聚合物基体的各种性能的稳定。

3.2溶胶一凝胶法

这种方法从20世纪80年代以来开始使用。它是将硅氧烷非金属化合物等前驱物溶于水或有机溶剂中,溶剂经水解生成纳米SiO2粒子并形成溶胶,再经蒸发干燥而成凝胶。具体方法是:将前驱物(如Si(OCH2CH3)4)溶于聚合物溶液中,在催化剂存在下让前驱物水解形成纳米SiO2胶体粒子,干燥后得到半互穿网络的聚合物纳米SiO2粒子复合物。另一种方法是将前驱物与单体溶解在溶剂中,让水解与聚合反应同时进行,使聚合物均匀嵌入无机纳米SiO2网络中形成半互穿以至全互穿(聚合物已交联)网络。

3.3共混法

共混法是将纳米SiO2与聚合物直接进行分散混合而得到的一类复合材料。这类方法的特点是过程较简单,容易实现工业化。其缺点是要纳米SiO2粒子呈原生态纳米级的均匀分散较困难,因而也给产品的稳定性带来新的问题。为此也发展了以下一些不同的工艺。

(l)溶液共混法将聚合物溶解于溶剂中,然后加人纳米SiO2粒子并混合使之均匀分散,除去溶剂而得到复合材料,其特点是纳米SiO2粒子的分散较好,但同时也带来环境污染、溶剂回收等问题。

(2)悬浮液或乳液共混法与溶液共混法类似,只是用悬浮液或乳液代替溶液。在不适宜溶液共混的一些情况下,悬浮液或乳液共混也是一类有用的方法。

4.纳米颗粒改性环氧树脂机理

对于纳米颗粒改性对胶粘剂的作用机制,己成为当前的研究热点。现在较普遍接受的观点是:纳米颗粒表面众多的非配对原子易与环氧胶基体发生物理及化学作用,与分子链发生物理或化学结合。在纳米粒子均匀分散于环氧胶中后,如果环氧胶受到外力冲击,能量在高分子基体和纳米颗粒界面间被吸收或纳米颗粒易产生应力集中效应而引发其周围基体树脂产生银纹,纳米粒子间的环氧胶也产生塑性形变,吸收一定的冲击能随着粒子的微细化,其比表面积将进一步增大,使纳米粒子与环氧胶间接触面亦增大,当材料受到外力冲击时会产生更多银纹及塑性形变,并吸收更多冲击能而达到增韧效果。另一方面,刚性纳米粒子的存在,使环氧胶内银纹扩展受阻和钝化,终停止开裂,不致发展为破坏性开裂,从而产生增韧效果。但是,如果纳米粒子加入太多,纳米粒子就会团聚,大的团聚体引发裂纹,宏观表现为在环氧胶中部开裂形成,断裂强度反而下降。另外,随着纳米粒子的加入,阻止分子链运动或交联密度增大,使玻璃化温度升高,提高体系的耐热性。

5.纳米改性环氧树脂的研究现状

Bauer[11]等人用*对纳米表面处理,然后在酚醛环氧树脂 (epoxy Novolac)胶粘剂中分别加入30wt%的上述纳米颗粒,发现环氧胶的硬度得到提高,玻璃化转变温度提高了20K。李赫亮[12]向环氧树脂胶粘涂层中分别加入粉煤灰、纳米,通过改变磨料的粒度和含量,冲蚀的转角和转速,研究其耐冲蚀磨损性能,发现以纳米为填料比以粉煤灰为填料的环氧树脂胶粘涂层的抗冲蚀能力强。Yao 等[13]比较了-环氧纳米复合物在玻璃态时的储能模量,发现对环氧基材有显著的增强效果。用环氧树脂和经聚氧乙烯改性的二氧化硅[14],并用二氨二苯砜作为固化剂成功后制成的EP/纳米复合材料,纳米粒径的无机颗粒在环氧基质中主要呈均相分布而无大的颗粒。研究发现经过聚氧乙烯(PEO)接枝的二氧化硅颗粒含有柔韧的PEO链段,它能有效的加强改性剂与环氧树脂之间的连接力。在储能模量和玻璃化温度变化不大,并且所有的改性体系的断裂面表现出坚韧的断裂性能的情况下,经过聚氧乙烯接枝的二氧化硅改性后的环氧树脂的冲击强度是纯环氧树脂的2倍。将纳米颗粒加入到环氧树脂中发现环氧试样的质量损失和剥蚀率出现了明显的下降,抗原子氧剥蚀性能得到了大幅度的提高[15]

随着水工建设的发展需求,对环氧树脂的技术要求也越来越高,其中尤以解决环氧树脂的老化(耐候性)、增强增韧等问题zui为迫切。传统的环氧树脂改性,主要通过对环氧低聚物和固化剂的选择,但改性效果不理想,而且不能同时解决耐候性、增加强度和韧性等问题。近年来,聚合物基纳米复合材料以其优异的性能受到人们的关注。国内外有报道已经在实验室制备出环氧树脂*纳米粒子复合材料,但如何解决纳米颗粒在环氧树脂基体中的均匀分散问题,提高制备水平和制备效率,依然有待进一的研究。

纳米二氧化硅环氧树脂研磨分散机,纳米二氧化硅分散机,环氧树脂分散机

上一篇: IKN高剪切均质机在植物蛋白饮料的应用 下一篇: 胶体磨的结构及原理
提示

请选择您要拨打的电话: