德国HYDRO-BIOS公司MultiNet浮游生物连续采样网

德国HYDRO-BIOS公司MultiNet浮游生物连续采样网

参考价: 面议

具体成交价以合同协议为准
2018-05-14 09:00:00
1673
产品属性
关闭
青岛水德仪器有限公司

青岛水德仪器有限公司

免费会员
收藏

组合推荐相似产品

产品简介

名称: 德国HYDRO-BIOS公司MultiNet浮游生物连续采样网
类别: 分层拖网
型号: MultiNet
关键字: MultiNet浮游生物连续采样网,浮游生物分层拖网
产品简介: MultiNet浮游生物连续采样网用于海洋浮游生物连续分层采样
供应商: 青岛水德仪器有限公司

详细介绍

Click for details... 名称: 
类别: 分层拖网
型号: MultiNet
关键字: 浮游生物连续采样网,浮游生物分层拖网,浮游生物网
产品简介: MultiNet浮游生物连续采样网用于海洋浮游生物连续分层采样
供应商: 青岛水德仪器有限公司
详细介绍

MultiNet浮游生物连续采样网
Multi Plankton Sampler MultiNet



垂直操作状态                  水平操作状态

MultiNet是世界*的浮游生物自动采样器,它可以在连续的水层中进行水
平采样和垂直采样。每个MultiNet安装有5只(9只)3种不同孔径的网袋:
Mini型,0.125m2;Midi型,0.25m2,和Maxi型,0.5m2。

整个系统由甲板控制单元和一个不锈钢框架组成,5(9)只网袋通过拉链
连接器连接在不锈钢框架的帆布部分上。

网袋的开启与关闭是通过一个电池驱动的马达单元激发的。控制网袋开关的
指令时通过甲板控制单元和水下单元之间的单芯和多芯电缆传输的。我们可
以提供各种网袋,适用于各种标准的和非标准的应用场合。对于常规的水平
采样操作,我们*您使用孔径为300微米(孔径从100微米至500微米都
是可选的)的网袋;对于垂直采样来说,网孔大小从55微米到500微米都是
适用的。

水下单元中集成一个压力传感器,深度和所有其他系统相关数据会一起在甲
板控制单元的液晶显示屏上显示。

水下单元上可以安装两个带有角度补偿的功能的电子网口流量计:一个装在
水下单元的开口内,用于测定通过网口的水量;另一个装在网口开口外,用
于测定“堵塞效应”。

在水平采样操作中,MultiNet安装了一个V-Fin深度抑制器;在垂直采样操作
时,一个不锈钢支撑安装在网筒固定器上,以便垂直采样时,采样网能够安
全迅速地降到所需的深度。



操作
在初始位置的时候,MultiNet上的所有网袋是关闭的。水流可以很自由地流过
框架,并允许采样器以的速度降到zui期望的深度,然后按下甲板单元上
的按钮,可以使*个网袋打开,当操作结束时,可以通过第二个指令将其关
闭。在*个网袋关闭的同时,第二个网袋会接着打开,当甲板单元显示激活
的网袋号码时,这些网袋会重复以上过程。在操作Mini型和Midi型MultiNet时,
第5个网袋保持敞开状态,它会收集从zui浅期望深度到表层的浮游生物。在操
作Maxi型MultiNet时,第9个网袋可以在到达水面之前闭合。

离线组件
在电缆无法获得情况下,我们可以给您提供一个离线组件,可以通过PC机对采
样深度进行预编程。安装这个离线组件后,网袋的开合可以根据预先选择好的
深度间隔自动进行。在操作过程中,所有的测量数据都会存储到离线组件中,当
操作结束时,这些数据可以下载到PC机上进行处理。

CT组件
MultiNet与CT组件结合在一起,拥有一台CTD(温盐深仪)的完整功能。
CT组件由一个电导率传感器,一个温度传感器和一块附加电路板组成,它们集成
在MultiNet的马达驱动单元中。根据UNESCO公式,系统可以从获得的CTD数据,
计算出盐度、密度和声速等指标。

额外选择
各种参数的传感器
容量4M的数据存储器
电池供电的手持终端,当在线操作没有交流电供电时,用来代替甲板控制单元
适用于6000米采样的特殊型号

特性
水平操作和垂直操作
容易操作
双向通讯
标准深度3000米
长距离FSK自动测量记录传导
低电量消耗
电池供电的水下单元,导线上zui大电压5V
EC-认证(CE)EN 50081-1,EN 50082-1
操作温度范围-40℃ ~ +85℃

MultiNet订购指南:
438 120 Mini型MultiNet
            a. 不锈钢网框架,开口大小为35.5cm×35.5cm=0.125m2
               带集成压力传感器(0-3000dbar±0.1%f.s.)的马达单元和钛制电池舱
               带拉链结合器的帆布部分
            b. 5个带有拉链结合器的网袋,标准网孔大小300微米(或者用户)
            c. 5个塑料网桶,直径11cm,上面覆盖有筛绢
            d. 不锈钢网桶固定器
            e. 2根索绳
            f. V-Fin深度抑制器,22kg
            g. 不锈钢支撑
            h. 甲板控制单元,交流电源供电(86-260V AC)
            i. 基于Windows的HYDRO-BIOS操作软件,用来控制整个MultiNet系统

438 130 Midi型MultiNet
            a. 不锈钢网框架,开口大小为50cm×50cm=0.25m2
               带集成压力传感器(0-3000dbar±0.1%f.s.)的马达单元和钛制电池舱
               带拉链结合器的帆布部分
            b. 5个带有拉链结合器的网袋,标准网孔大小300微米(或者用户)
            c. 5个塑料网桶,直径11cm,上面覆盖有筛绢
            d. 不锈钢网桶固定器
            e. 2根索绳
            f. V-Fin深度抑制器,22kg
            g. 不锈钢支撑
            h. 甲板控制单元,交流电源供电(86-260V AC)
            i. 基于Windows的HYDRO-BIOS操作软件,用来控制整个MultiNet系统

438 140 Maxi型MultiNet
            a. 不锈钢网框架,开口大小为71cm×71cm=0.5m2
               带集成压力传感器(0-3000dbar±0.1%f.s.)的马达单元和钛制电池舱
               带拉链结合器的帆布部分
            b. 9个带有拉链结合器的网袋,标准网孔大小300微米(或者用户)
            c. 9个塑料网桶,直径11cm,上面覆盖有筛绢
            d. 不锈钢网桶固定器
            e. 2根索绳
            f. V-Fin深度抑制器,70kg
            g. 不锈钢支撑
            h. 甲板控制单元,交流电源供电(86-260V AC)
            i. 基于Windows的HYDRO-BIOS操作软件,用来控制整个MultiNet系统
            k. 2台电子网口流量计

438 116 电子网口流量计,用于MultiNet系统
             适用于流速为0.1m/s至9.9m/s采样环境

438 160 离线组件,用于MultiNet系统
             使用于无法获得电缆的情况下
             可以根据深度进行采样间隔的预编程
             可以存储测量数据
             数据可以传输到PC
             数据存储器容量1M

450 500 CT组件,用于MultiNet系统
             附加电路板
             电导率传感器:0~65±0.01mS/cm
             温度传感器:-2~+32±0.005℃
             采样频率:1Hz

技术参数:

水下单元 小型Mini 中型Midi 大型Maxi
尺寸:宽*长*高 65*90*80cm 80*90*95cm 120*110*135cm
网开口 35.5*35.5cm 50*50cm 71*71cm
网袋 5个/160cm长 5个/250cm长 9个/365cm长
标准网孔大小 300μm 300μm 300μm
网筒 5个/直径110mm 5个/直径110mm 9个/直径110mm
工作时系统总长度 470cm 560cm 800cm
标准工作深度 3000m 3000m 3000m
压力传感器 3000.0dbar±0.1%f.s.
(其他范围可选)
3000.0dbar±0.1%f.s.
(其他范围可选)
3000.0dbar±0.1%f.s.
(其他范围可选)
重量:
网框 75kg 100kg 260kg
不锈钢支撑 30kg 50kg 70kg
V-Fin深度抑制器 22Kg 22Kg 70Kg
材质:
网框 不锈钢 不锈钢 不锈钢
马达单元和电池舱
网袋 聚酰*** 聚酰胺 聚酰胺
网筒 PVC PVC PVC
V-Fin深度抑制器
断裂负载:
浅水工作(0-500m) 约1500kg 约2000kg 约4000kg
深水工作(500-3000m) 约5000kg 约8000kg 约12000kg
电气连接参数:
连接插头 SUBCONN BH 2 M SUBCONN BH 2 M SUBCONN BH 2 M
电缆反向插头 SUBCONN IL 2 F SUBCONN IL 2 F SUBCONN IL 2 F
电缆连接 单芯或多芯电缆 单芯或多芯电缆 单芯或多芯电缆
zui大电缆电阻(回路) 1000Ω 1000Ω 1000Ω
甲板控制单元 通过按钮控制网袋的闭合,显示网袋序号,压力,电池状态,通过网口的水的流量和流速等;
带LED背景光的液晶显示器;与PC连接的RS232接口
电源:
水下单元 3节3V锂电池供电 3节3V锂电池供电 3节3V锂电池供电
甲板控制单元 86-260V AC 86-260V AC 86-260V AC
拖网速度(当网袋的孔径为300μm时)
水平操作 zui大4knots zui大4knots zui大4knots
垂直操作 zui大1m/s zui大1m/s zui大1m/s

代表文献:
1.H. Weikert and H.-Ch. John,1981.Experiences with a modified Bé multiple opening-closing plankton net.Journal of Plankton Research.3(2):167-176.
2.Smith, Sharon L.,1988.Copepods in Fram Strait in summer: Distribution, feeding and metabolism.Journal of Marine Research.46(1):145-181(37).
3.Jürgen Lenz, Alvaro Morales, Judith Gunkel,1993.Mesozooplankton standing stock during the North Atlantic spring bloom study in 1989 and its potential grazing pressure on phytoplankton: a comparison between low, medium and high latitudes.Deep Sea Research Part II: Topical Studies in Oceanography.40(1–2):559–572.
4.H.G. Fransz, S.R. Gonzalez,1997.Latitudinal metazoan plankton zones in the antarctic circumpolar current along 6°W during austral spring 1992.Deep Sea Research Part II: Topical Studies in Oceanography.44(1–2):395–414.
5.S. Sundby, A. J. Boyd, L. Hutchings, M. J. O'Toole, K. Thorisson & A. Thorsen,2001.Interaction between Cape hake spawning and the circulation in the northern Benguela upwelling ecosystem.South African Journal of Marine Science.23(1):317-336.
6.Elisabeth Halvorsen, Kurt S. Tande, Are Edvardsen, Dag Slagstad, Ole Petter Pedersen,2003.Habitat selection of overwintering Calanus finmarchicus in the NE Norwegian Sea and shelf waters off Northern Norway in 2000–02.Fisheries Oceanography.12(4-5):339–351.
7.Holger Auel, Iris Werner,2003.Feeding, respiration and life history of the hyperiid amphipod Themisto libellula in the Arctic marginal ice zone of the Greenland Sea.Journal of Experimental Marine Biology and Ecology.296(2):183–197.
8.Gustavo Alvarez Colombo, Hermes Mianzan and Adrian Madirolas,2003.Acoustic characterization of gelatinous plankton aggregations: four case studies from the Argentine continental shelf.Journal of Marine Science.60(3):650-657.
9.Brierley, Andrew S., Boyer, David C., Axelson, Bjorn Erik, Lynam, Christopher P., Sparks, Conrad A.J., Boyer, Helen, Gibbons, Mark J.,2005.Towards the acoustic estimation of jellyfish abundance.Marine Ecology Progress Series.295: 105-111.
10.FOSSHEIM Maria, MENG ZHOU, TANDE Kurt S., PEDERSEN Ole-Petter, YIWU ZHU, EDVARDSEN Are,2005.Interactions between biological and environmental structures along the coast of northern Norway.Marine Ecology Progress series.300:147-158.
11.Heino Fock & Hans-Christian John,2006.Fish larval patterns across the Reykjanes Ridge.Marine Biology Research.2(3):191-199.
12."Katarzyn Blachowiak-Samolyk, Slawek Kwasniewski, Katherine Richardson,
Katarzyna Dmoch, Edmond Hansen, Haakon Hop, Stig Falk-Petersen,
Lone Thybo Mouritsen",2006.Arctic zooplankton do not perform diel vertical migration (DVM) during periods of midnight sun.Marine Ecology Progress series.308:101–116.
13.Holger Auel, Hans M. Verheye,2007.Hypoxia tolerance in the copepod Calanoides carinatus and the effect of an intermediate oxygen minimum layer on copepod vertical distribution in the northern Benguela Current upwelling system and the Angola–Benguela Front.Journal of Experimental Marine Biology and Ecology.352(1):234–243.
14.Martin O. Macnaughton, Jonas Thormar, Jørgen Berge,2007.Sympagic amphipods in the Arctic pack ice: redescriptions of Eusirus holmii Hansen, 1887 and Pleusymtes karstensi (Barnard, 1959).Polar Biology.30(8):1013-1025.
15.H. Habeebrehman, M.P. Prabhakaran, Josia Jacob, P. Sabu, K.J. Jayalakshmi, C.T. Achuthankutty, C. Revichandran,2008.Variability in biological responses influenced by upwelling events in the Eastern Arabian Sea.Journal of Marine Systems.74(1–2):545–560.
16.Katarzyna Blachowiak-Samolyk, Slawek Kwasniewski, Haakon Hop and Stig Falk-Petersen,2008.Magnitude of mesozooplankton variability: a case study from the Marginal Ice Zone of the Barents Sea in spring.Journal of Plankton Research.30(3):311-323.
17.Marina E. Sabatini,2008.Life history trends of copepods Drepanopus forcipatus (Clausocalanidae) and Calanus australis (Calanidae) in the southern Patagonian shelf (SW Atlantic).Journal of Plankton Research.30(9):981-996.
18.Veronica Fernandes, N. Ramaiah,2009.Mesozooplankton community in the Bay of Bengal (India): spatial variability during the summer monsoon.Aquatic Ecology.43(4):951-963.
19.Silke Laakmann, Marc Kochzius, Holger Auel,2009.Ecological niches of Arctic deep-sea copepods: Vertical partitioning, dietary preferences and different trophic levels minimize inter-specific competition.Deep Sea Research Part I: Oceanographic Research Papers.56(5):741–756.
20.Olli Urpanen, Timo J. Marjomäki, Markku Viljanen, Hannu Huuskonen, Juha Karjalainen,2009.Population size estimation of larval coregonids in large lakes: Stratified sampling design with a simple prediction model for vertical distribution.Fisheries Research.96(1):109–117.
21.Anne Lebourges-Dhaussy, Janet Coetzee, Larry Hutchings, Gildas Roudaut and Cornelia Nieuwenhuys,2009.Zooplankton spatial distribution along the South African coast studied by multifrequency acoustics, and its relationships with environmental parameters and anchovy distribution.ICES Journal of Marine Science.66(6):1055-1062.
22.Silke Laakmann, Meike Stumpp, Holger Auel,2009.Vertical distribution and dietary preferences of deep-sea copepods (Euchaetidae and Aetideidae; Calanoida) in the vicinity of the Antarctic Polar Front.Polar Biology.32(5):679-689.
23.Holger Auel, Werner Ekau,2009.Distribution and respiration of the high-latitude pelagic amphipod Themisto gaudichaudi in the Benguela Current in relation to upwelling intensity.Progress in Oceanography.83(1–4):237–241.
24.C.R. Asha Devi, R. Jyothibabu, P. Sabu, Josia Jacob, H. Habeebrehman, M.P. Prabhakaran, K.J. Jayalakshmi, C.T. Achuthankutty,2010.Seasonal variations and trophic ecology of microzooplankton in the southeastern Arabian Sea.Continental Shelf Research.30(9):1070–1084.
25.Vijayalakshmi R. Nair, R. Gireesh,2010.Biodiversity of chaetognaths of the Andaman Sea, Indian Ocean.Deep Sea Research Part II: Topical Studies in Oceanography.57(24–26):2135–2147.
26.JANNE E. SØREIDE, EVA LEU, JØRGEN BERGE, MARTIN GRAEVE, STIG FALK-PETERSEN,2010.Timing of blooms, algal food quality and Calanus glacialis reproduction and growth in a changing Arctic.Global Change Biology.16(11):3154–3163.
27.Silke Laakmann, Holger Auel,2010.Longitudinal and vertical trends in stable isotope signatures (δ13C and δ15N) of omnivorous and carnivorous copepods across the South Atlantic Ocean.Marine Biology.157(3):463-471.
28.Nikolaj G. Andersen, Torkel Gissel Nielsen, Hans Henrik Jakobsen, Peter Munk, Lasse Riemann,2011.Distribution and production of plankton communities in the subtropical convergence zone of the Sargasso Sea. II. Protozooplankton and copepods.Marine Ecology. Progress series.426:71-86.
29.Cornelia Jaspers, Lene Friis Møller, Thomas Kiørboe,2011.Salinity Gradient of the Baltic Sea Limits the Reproduction and Population Expansion of the Newly Invaded Comb Jelly Mnemiopsis leidyi.PLoS One.6(8):e24065.
30.Jessica R. Frost, Anneke Denda, Clive J. Fox, Charles A. Jacoby, Rolf Koppelmann, Morten Holtegaard Nielsen, Marsh J. Youngbluth,2012.Distribution and trophic links of gelatinous zooplankton on Dogger Bank, North Sea.Marine Biology.159(2):239-253.
31.Silke Laakmann, Holger Auel, Marc Kochzius,2012.Evolution in the deep sea: Biological traits, ecology and phylogenetics of pelagic copepods.Molecular Phylogenetics and Evolution.65(2):535–546.
32.Anna Schukat, Lena Teuber, Wilhelm Hagen, Norbert Wasmund, Holger Auel,2013.Energetics and carbon budgets of dominant calanoid copepods in the northern Benguela upwelling system.Journal of Experimental Marine Biology and Ecology.442:1-9.
更多关键字: 浮游生物连续采样网,浮游生物分层拖网,浮游生物网, MultiNet,浮游生物分层采样网,大型浮游生物网,深海浮游生物网

上一篇:水中油浓度分析仪的作用、核心特点 下一篇:盐水钙镁在线分析仪选择时需考虑哪些因素?
热线电话 在线询价
提示

请选择您要拨打的电话:

温馨提示

该企业已关闭在线交流功能