实验室污水处理一体化设备
时间:2020-09-02 阅读:441
实验室污水处理一体化设备
实验室污水处理中的应用
生物处理法根据参与作用的微生物的需氧情况,可分为好氧法和厌氧法两大类。一般情况,好氧法比较适用于较低浓度污水,如乙烯厂污水;而厌氧法较适用于处理污泥和较高浓度的污水。好氧生物处理法可分为活性污泥法和生物膜法两大类。活性污泥法是水体自净的人工强化方法,是一种依靠活性污泥工作主体的去除污水中有机物的方法。存在于活性污泥中的好氧微生物必须在有氧气存在的条件下才能起作用。在污水处理生化系统的曝气池中,充氧效率与好氧微生物生长量成正相关性。溶解氧的供给量要根据好氧微生物的数量、生理特性、基质性质及浓度来综合考虑。这样,活性污泥才能处在佳的降解有机物的状态。根据试验表明,曝气池中溶解氧维持在3~4mg/L为宜,若供氧不足,活性污泥性能差,导致废水处理效果下降。为保证有充足的供氧,必须依靠一种设备来完成,例如曝气器。
YSP1000型氧化沟转刷曝气机是一种新型曝气机,它的核心部件——叶片采用高强度不锈钢冲压成型。整套机组的特点是重量轻、强度好、运转平衡、充氧效率高、安装操作方便,可连续或间断运行,广泛应用于城市污水处理,也可用于印染、石油化工、食品加工及造纸、制革等工业废水的处理。该设备主要由转刷叶片、传动主轴、电机驱动机构及联接支承等部件组成。叶片在传动主轴的带动下旋转,冲击水体,推动水体作水平层流,从而使水与空气充分接触,同时使空气随叶片的旋转而被带入水中并被强制切割,促进氧的传输。
膜分离法是一种具有巨大潜力和实用性的废水处理技术,其原理是以选择性透过膜为分离介质,通过在膜两边施加一个推动力(如浓度差、压力差、电位差等),使废水中的组分选择性的透过膜,从而达到分离净化的目的。膜分离技术应用于废水处理具有能耗低、效率高和工艺简单等特点。目前,应用的膜分离技术主要有微滤、超滤、纳滤和反渗透。近年来,在焦化废水深度处理领域,研究与应用较多的是超滤-反渗透的双膜法焦化废水处理工艺,经超滤-反渗透处理后的焦化废水,出水符合工业循环冷却水水质标准,可回用于净环补充水、锅炉软水补给水,甚至部分替代新水。穆明明等人对生化处理后的出水采用“砂虑+超滤+纳滤+反渗透”工艺进行深度处理,处理后的出水远优于《炼焦化学工业污染物排放标准》的排放标准的要求。
转刷曝气机适用于推流式氧化沟曝气、推流,对污水进行充氧,可以防止活性污泥的沉淀,有利于微生物的生长,是氧化沟污水处理系统的主要设备。转刷曝气机具有曝气充氧、混合、推流的多重作用,是理想的曝气设备,曝气转刷广泛应用于市政污水以及工业废水处理。
设备组成
括进水口、过滤池、排污口、厌氧反应池、好氧反应池、分子过滤膜、清水池和出水口,所述过滤池侧面开设有进水口,所述过滤池底部开设有排污口,所述过滤池与厌氧反应池连通,所述厌氧反应池与分子过滤膜连通,所述分子过滤膜与好氧反应池连通,所述好氧反应池与分子过滤膜连通,所述分子过滤膜与清水池连通,所述清水池上开设有出水口。本实用新型结构简单,操作方便,给生物污水处理带来了很大的便利。
现有技术中,污水回流设备主要是依靠刮泥链条、转刷等机械方式旋转对泥层刮取集聚,或通过污水回流泵进行污水、污泥回流。这些方式占地空间大、需要动力高、消耗能耗大,因此效率也相对低下。因此,对于涉及大比例回流的工艺,现有技术的污水回流设备是无法满足这种工艺技术要求的。
例如,在采用一体化生物反应装置处理高浓度有机废水时,需要大比例回流以提高回流比。否则,若采用常规污水处理回流系统,会导致占地空间大、运行费用高,一次性投资大。
因此,本领域迫切需要一种可大大提高污水循环回流比,占地空间小,运行成本低,适用于一体化生物反应器的污水回流装置。
包括进水口、过滤池、排污口、厌氧反应池、好氧反应池、分子过滤膜、清水池和出水口,所述过滤池侧面开设有进水口,所述过滤池底部开设有排污口,所述过滤池与厌氧反应池连通,所述厌氧反应池与分子过滤膜连通,所述分子过滤膜与好氧反应池连通,所述好氧反应池与分子过滤膜连通,所述分子过滤膜与清水池连通,所述清水池上开设有出水口。
转刷曝气机由电机、减速器、主轴、曝气转刷叶片、支座与联轴器、润滑密封系统等组成,主轴在传动装置的带动下以一定的速度回转,主轴上均匀布置着由碳钢、不锈钢材料或非金属材料制成的刷片,曝气转刷叶片在随主轴水平旋转的过程中,刷片与水接触,将空气中的氧不断导入水中,并将水抛入空中,充分与空气接触,空气迅速溶入水中,完成充氧过过程。同时曝气转刷对水的推动作用确保池底有0.15~0.3m/s的流速,使活性污泥处于悬浮迁移状态,与进水混合良好。转刷曝气机具有动力效率高、充氧量大、寿命长、功率损耗低、低噪音、运行稳定可靠的特点。
有机超滤膜的应用
生物法是利用微生物的新陈代谢作用,氧化分解废水中的有机物的处理方法。根据微生物需氧要求的不同,生物法主要可分为好氧处理法和厌氧处理法两大类。常用的生物处理法主要有活性污泥法和生物膜法。活性污泥法和生物膜法都存在着同样的问题,即COD和色度的去除率不高,系统处理出水不能达到规定的排放标准,而且,更重要的是剩余污泥的处理及高昂的运行费用让人们难以承受
处理方法
运行过程中,有两只池处于曝气阶段,而边池的一只是处于沉淀状态,处理后出水从堰口排出,剩余污泥从底池排除。例如,污水从左侧矩形池进水,该池作曝气池,从连通管到中间矩形曝气池,再经连通管至右侧矩形沉淀池,处理水由固定堰排出,水流方向由左向右;经过一定时段后,关闭左侧池进水闸,开启中间池进水闸,此时,左侧池开始停止曝气,而污水从中间池流向右侧池;经过一个短暂的过渡段后,关闭中间池进水闸,而改从右侧池进水,此时右侧池曝气,左侧池经静止沉淀后出水,水流从右向左流动,完成一个切换周期,这样周而复始,污水即达到净化的目标。
(3)确定混合液污泥浓度MLVSS MLVSS值取决于曝气系统的供氧能力,以及二沉池的泥水分离能力。从降解污染物质的角度来看,MLVSS应进量高一些,但当MLVSS太高时,要求混合液的DO值也就越高,前已述及,在同样的供氧能力时,维持较高的DO值需要较多的空气量,而一些处理厂的曝气系统难以达到要求。另外,当MLVSS 太高时,要求二沉池又叫强的泥水分离能力,一些处理厂的二沉池表面积相对较小,难以提供充足的泥水分离能力。因此,应根据处理厂的实际情况,确定一个大MLVSS 值,一般在1500-3000mg/L之间。
化学氧化法
化学氧化法是指利用各种氧化剂如过氧化氢、臭氧、*等氧化性质使废水中的有机物质氧化为二氧化碳和水。程峥等的研究表明,用臭氧对经二级生化处理后的造纸废水进行氧化处理之后,COD和色度的去除率随时间和臭氧浓度的增加而增大;COD和色度的去除率随温度的升高先增大后减小。在佳的实验条件下,COD和色度的去除率可分别达到39.87%和88.51%。臭氧还可以与过氧化氢联用深度处理制浆造纸废水,终可将废水的COD从300mg/L降至95.25mg/L,色度从350倍降至4倍。对于可生化性差的制浆造纸废水,可利用深度氧化工艺来处理。Fenton反应可有效地用于造纸厂废水的三级处理,在相同的实验条件下,UV照射的Fenton工艺(Fe2+/H2O2/UV)比黑暗条件下的反应(Fe2+/H2O2)更有效。
光催化氧化法
光催化氧化法作为一种新型的水处理方法备受关注。李翠翠等概述了光催化氧化反应的原理、特点以及光催化材料的性质、催化剂用量、pH值、光源强度、光照时间、外加氧化剂、残杂改性等因素对反应过程的影响和作用机理。有研究通过絮凝-纳米*光催化氧化法对造纸废进行处理,COD的去除率达到95%以上,色度去除率达到98%以上。由此可以看出光催化氧化法具有良好的应用前景。
湿式氧法
湿式氧化法是在高温(150~350℃)、高压(5~20MPa)下用空气作为氧化剂,来氧化水中溶解悬浮态的有机物或者还原态的无机物使之生产*和水的一种处理方法。实验证明采用双组分催化剂如Cu/Mn、Cu/Pb等对造纸废水进行湿式催化氧化法比过渡金属、贵金属的单组分催化剂效果更好。
电渗析是一种以电位差为推动力,利用离子交换膜的选择透过性,从溶液中脱除或富集电解质的膜分离操作。在外加直流电场作用下,利用膜的选择透过性使黑液中阴、阳离子作定向迁徙,使木素在阳极析出,阴极区回收NaOH。电渗析与传统碱回收系统相结合的生产流程,处理造纸稀黑液可以得到碱和木质素。
设备优点:
1、埋设于地表以下,设备上面的地表可作为绿化或其他用地,不需要建房及采暖、保温。
2、二级生物接触氧化处理工艺均采用推流式生物接触氧化,其处理效果优于*混合式或二级串联*混合式生物接触氧化池。
3、地埋式生活污水处理设备的除臭方式除采用常规高空排气,另配有土壤脱臭措施。
缺点:
1.不利于维修.设备出现故障后,不方便检修与更换。
2.对环境适应性,冬天防冻、夏天防洪.北方需要埋入较深,并做保温处理。