其他品牌 品牌
厂商性质
潍坊市所在地
乡镇生活污水处理一体化设备
采用*、合理工艺,确保污水处理后达到国家排放标准及环境保护要求。
供货产品有:地埋式一体化污水处理设备、气浮机、二氧化氯发生器、加药装置、机械格栅、UASB厌氧塔、板框压滤机、玻璃钢产品、一体化泵站等。
1 市政污水低碳源情况分析
为研究不同地区市政污水的碳源情况,分别选定京津冀地区和云南地区的典型污水处理厂进水进行统计分析。京津冀地区的11座市政污水处理厂原水BOD5/TN不足4的有8座,占72.7%。南方市政污水的碳氮比较北方更低,对云南地区的13座污水处理厂的进水进行分析,见图1b,只有一座污水处理厂的进水BOD5/TN超过4,低碳氮比污水占比达到90%以上。郭泓利等选取国内分布在19个省市自治区的127 座污水处理厂的进水水质进行了统计分析,80%的污水处理厂BOD5/TN<3.6,仅10%的污水处理厂大于4。韦启信等基于*城镇污水处理数据管理系统的水质数据也表明,我国70%左右的城镇污水处理厂进水BOD5/TN低于4,且南方城市较北方城市碳氮比更低。因此碳源不足的问题在全国范围内普遍存在。
2 原水碳源高效利用优化措施
2.1 传统工艺的改良
改良型的AAO、氧化沟和SBR工艺,是在传统工艺的前段增加一段预缺氧区(SBR工艺是在时间顺序上增加一段缺氧反应时间),主要目的是将外回流带来的NO-3-N在此区域进行反硝化,为后段的厌氧释磷创造更好的厌氧环境;同时预缺氧段进水中的原水有机物进行一定程度的水解后,更容易被聚磷菌利用。同时,增加预缺氧区,原水在碳源分配上将具有更多的选择性,有利于污水处理厂在运行时摸索出*的碳源分配方式,将原水碳源利用*化。
深圳某20万m3/d的改良AAO工艺项目中对预缺氧/厌氧的进水比进行了试验研究,在其他工艺条件不变的情况下,预缺氧/厌氧配水比从2降低到1的过程中,溶解性COD在厌氧和缺氧段的浓度下降趋势增大、出水的NO-3-N浓度基本维持稳定、而出水TP浓度逐渐降低。表明在该配水比范围内,随着厌氧进水量的增大,厌氧释磷效果增强,并可维持反硝化效率,原水碳源利用率逐渐升高。当继续降低预缺氧/厌氧进水比到0.5,厌氧释磷达到zui大,出水TP进一步降低,但出水NO-3-N升高,当该比例降低到0.2时,出水TP和NO-3-N均升高,并且预缺氧段和厌氧段的NO-3-N浓度明显升高,破坏了厌氧环境,影响除磷效果。
综上所述,改良的AAO工艺通过调整进水比例,在不增加外部碳源的条件下,可较大程度地增加工艺过程的氮磷污染物去除效率。该措施已经在多个项目中进行应用和推广,获得了良好的效果反馈。
2.2 分段进水的技术措施
分段进水是在传统生化处理工艺上的进一步改进,主要目的是通过进水在沿程方向上的分布,精细化利用原水碳源。目前分段进水大多用于多级AO工艺和改良的AAO工艺中,多级AO分段进水中前一段原水的硝化产物直接进入下一段缺氧区进行反硝化,因此可以较大程度地减少硝化液回流,提高TN理论去除效率并节约能源,但该工艺难以形成稳定的厌氧条件,在提高TN去除的前提下,牺牲了TP的去除效果。在改良的AAO工艺中实施分段进水,可一定程度上平衡TN和TP去除对碳源需求的矛盾。
山东济南某AAO工艺市政污水处理厂分三期建设,规模分别为1万m3/d、2万m3/d和3万m3/d,进水BOD5/TN*小于3,为了改善脱氮效果,该厂二期进行了分段进水的改造。实施方式是将进水分配到厌氧段和缺氧段,缺氧段沿程在池前端和中部进一步分为两部分进水,使缺氧进水更加均匀地分布在整个池内,增加混合程度,提高反应效率。表1的数据表明,在没有外部碳源投加的情况下,分段进水可以将系统TN去除率提升15%以上。
同时,针对冬季和夏季的不同气候条件和进水条件,研究了通过调整缺氧和厌氧段不同的进水比例提高效率的途径,结果表明分段进水配比对出水TN和TP有较大影响。冬季当缺氧池进水比例在20%~50%范围内时,二沉池出水TP偏低,平均1.7 mg/L左右,但出水TN偏高,当缺氧池进水比例提升至70%~80%时,二沉池出水TP平均值升至2.1 mg/L左右,但出水TN可以稳定达标排放;夏季进水TN较冬季略低,因此缺氧池进水比例降至50%左右,此时出水TN可以稳定达标(<15 mg/L),生化池出水TP可以达到1.6 mg/L左右。因此,可以根据不同情况,灵活调整运行方式,在保证出水达标的前提下,zui大化利用原水碳源。
乡镇生活污水处理一体化设备目前主流的污泥处理技术路线有厌氧消化、好氧发酵、干化焚烧、热解碳化。污泥厌氧消化、好氧发酵后可用于土地利用,污泥干化焚烧后可用于建材利用或填埋。其中,干化焚烧是zui为*的污泥处置方式,可zui大限度减少污泥的体积,杀死一切病原体,解决污泥的恶臭问题。另一方面,经过脱水的污泥热值相当于褐煤的水平,可以回收能量用于发电和供热,实现能源zui大化利用,降低处理成本。
1.2 污泥焚烧技术特点
污泥焚烧主要有单独焚烧、混合焚烧。单独焚烧投资较大,适合污泥处理规模较大的项目;混合焚烧处理规模取决于掺烧锅炉的容量和污泥掺烧比例。
单独焚烧有两种工艺:一是将污泥脱水后直接焚烧,这种工艺污泥含水量高,不利于着火燃烧,通常需添加辅助燃料,且焚烧效率低。其优点在于工艺简单,不需要太多预处理过程,易于控制,投资与运行成本低。另外一种,先对污泥进行干化处理,进一步降低污泥的含水率,提高其热值,再投入焚烧炉焚烧。其优点是燃烧过程不需要添加任何辅助燃料。但由于多了一道干化工序,且干化部分占投资比例较大,相比直接燃烧,投资大大提高。
混合焚烧就是将污泥与其他燃料,包括燃煤、生活垃圾、工业废渣一起燃烧处理,或将其按一定比例加入工业炉中焚烧,如加入水泥窑中焚烧。这样的处理方式优势在于同时处理多种工业、生活的废弃物,不必为焚烧污泥而专门建造锅炉,节省设备投资和燃料成本。利用水泥窑协同燃烧处理,可在不影响水泥品质的前提下,将污泥固定在水泥中,*处置污泥,节省设备投资的同时,又省去了处置污泥的流程。需注意的是,因含水率和热值的差别,掺烧污泥后会改变原有燃烧条件,且增加了烟气污染排放,要注意掺烧污泥的比例,确保对原有燃烧的影响控制在合理范围内,污染物排放符合排放标准。
1.3 污泥焚烧处理的问题
污泥焚烧zui大的问题在于烟气污染物的排放。污泥中除了含有大量的氮、硫元素,燃烧时,会产生氮氧化物、二氧化硫等污染性气体,对环境安全和人体健康危害巨大。污泥燃烧产生大量的飞灰,粉尘污染严重。污泥中含有重金属,包括镉、汞、铅等。在温焚烧下,大部分金属都蒸发了,当烟气流冷却时,它们凝固在飞灰的颗粒表面。研究表明:78%~98%的Cd、Cr、Cu、Ni、Pb和Zn固定在飞灰中,98%的Hg随着烟气排放到大气中。这些重金属毒性巨大,在自然界中极难降解,若不处理,会对环境造成不可逆的污染。因此采用焚烧处理污泥,必须配置一套烟气处理装置,确保烟气排放符合排放标准,这也增加了投资成本,使系统更加复杂。
1.4 污泥干化技术分类
污泥干化的意义在于降低污泥含水率,提高污泥热值,使其达到可燃的标准。污泥干化方式有热干化、电干化、微波干化、太阳能干化等方式。其中,热干化方式技术成熟可靠,实际工程中被广泛采用。热干化技术是利用热介质(高温烟气、蒸汽、导热油等)加热污泥,使污泥中水分全部或部分蒸发。