品牌
其他厂商性质
所在地
朗盛30吨塑料储罐 亚硫酸储罐PT-30000L
面议30吨盐酸储罐 30立方甲酸储罐朗盛
面议朗盛5吨清洗储罐 10吨盐酸储罐PT10000L
面议朗盛10立方双氧水储罐 盐酸储罐 水处理储存罐PT10000L
面议朗盛15吨盐酸储罐 15吨避光塑料罐PT15000L
面议朗盛塑业30吨农化工包装容器塑料盐酸储罐PT-30000L
面议朗盛塑业15吨立式盐酸储罐高纯水储蓄桶直卖PT-15000L
面议朗盛塑业5吨专门定制不渗漏韧性聚乙烯储罐塑料盐酸储罐PT-5000L
面议息烽防腐储罐 15立方PE储罐生产朗盛10吨
面议30吨PE储罐 聚乙烯防腐储罐 甲醇储存桶 朗盛
面议朗盛10吨甲酸储罐 PE防腐储罐
面议朗盛邻水防腐储罐 15吨耐摔储存罐PT15000L
面议滚塑储罐或者滚塑容器的制造是采用什么样的原料来制作,滚塑工艺对原料的物理和化学性质有什么样的要求,是不是任何一种聚乙烯都可以用来做滚塑容器产品,还是有特定的牌号来制作呢?下面我们来了解聚乙烯的种类解读滚塑原料的特性。滚塑储罐或者滚塑容器的制造是采用什么样的原料来制作,滚塑工艺对原料的物理和化学性质有什么样的要求,是不是任何一种聚乙烯都可以用来做滚塑容器产品,还是有特定的牌号来制作呢?下面我们来了解聚乙烯的种类解读滚塑原料的特性。线性低密度聚乙烯(LLDPE),是乙烯与少量高级α-烯烃(如丁烯--辛烯-四甲基戊烯-1等)在催化剂作用下,经高压或低压聚合而成的一种共聚物,密度处于0.915~0.940克/立方厘米之间。
但按ASTM的D-1248-84规定,0.926~0.940克/立方厘米的密度范围属中密度聚乙烯(MDPE)。新一代LLDPE将其密度扩大至塑性体(0.890~0.915克/立方厘米)和弹性体(<0.890克/立方厘米)。但美国塑料工业协会(SPI)和美国塑料工业委员会(APC)只将LLDPE的范围扩大至塑性体,不包括弹性体。上世纪80年代,UnionCarbide和DowChemical公司将其早期销售的塑性体和弹性体称之为非常低密度的聚乙烯(VLDPE)和超低密度聚乙烯(ULDPE)树脂。常规LLDPE的分子结构以其线性主链为特征,只有少量或没有长之链,但包含一些短支链。没有长支链使聚合物的结晶性较高。
通常,LLDPE树脂用密度和熔体指数来表征。密度由聚合物链聚单体的浓度决定。共聚单体的浓度决定了聚合物中的短支链量。短支链的长度则取决于共聚单体的类型。共聚单体浓度越高,树脂的密度越低。此外,熔体指数是树脂平均分子量的反映,主要由反应温度(溶液法)和加入链转移剂(气相法)来决定。平均分子量与分子量分布无关,后者主要受催化剂类型影响。LLDPE在20世纪70年代由UnionCarbide公司工业化,它代表了聚乙烯催化剂和工艺技术的重大变革,使聚乙烯的产品范围显著扩大。LLDPE用配位催化剂代替自由基引发剂,以及用较低成本的低压气相聚合取代成本较高的高压反应器,在比较短的时间内,便以其优异的性能和较低的成本。
在许多领域已替代了LDPE。目前LLDPE几乎渗透到所有的传统聚乙烯市场,包括薄膜、模塑、管材和电线电缆。LLDPE产品无毒、无味、无臭,呈颗粒。与LDPE相比具有强度高、韧性好、刚性强、耐热、耐寒等优点,还具有良好的耐环境应力开裂、耐撕裂强度等性能,并可耐酸、碱、有机溶剂等。2005年,我国LLDPE产量为188万吨,约占PE总产量的35.5%;消费量355万吨,约占PE总消费量的33.8%。预计未来2~3年内,LLDPE消费量将保持8%左右的速度继续增长。按照当前市场价格12000元/吨计算,我国LLDPE的市场规模已经超过了400亿元。按共聚单体类型,LLDPE主要划分为3种共聚物:C4(丁烯-1)、C6(-1)和C8(辛烯-1)。
其中,丁烯共聚物是生产量LLDPE树脂,而共聚物则是目前增长快的LLDPE品种。在LLDPE树脂中,共聚单体的典型用量为5%~10%重量分数,平均用量大约为7%。茂金属基的LLDPE塑性体(mLLDPE)具有传统LLDPE3倍多的平均共聚单体含量。低密度聚乙烯按聚合方法,可分为高压法和低压法。按照反应器类型可分为釜式法和管式法。以乙烯为原料,送入反应器,在引发剂的作用下以高压压缩进行聚合反应,从反应器出来的物料,经分离器除去未反应的乙烯之后,经熔融挤出造粒,干燥、掺合,送去包装。LDPE和LLDPE都具有的流变性或熔融流动性。LLDPE有更小的剪切敏感性,因为它具有窄分子量分布和短支链。
在剪切过程中(例如挤塑),LLDPE保持了更大的粘度,因而比相同熔融指数的LDPE难于加工。在挤塑中,LLDPE更低的剪切敏感性使聚合物分子链的应力松驰更快,并且由此物理性质对吹胀比改变的敏感性减小。在熔体延伸中,LLDPE在各种应变速率下通常都具有较低的粘度。也就是说它将不会象LDPE一样在拉伸时产生应变硬化。随聚乙烯的形变率增加.LDPE显示出粘度的惊人增加,分子链缠结引起。这种现象在LLDPE中观察不出,因为在LLDPE中缺少长支链使聚合物不缠结。这种性能对薄膜应用极重要.因为LLDPE薄膜在保持高强度和韧性下召易制更薄薄膜。nLLDPE的流变性可概括为“剪切时刚性”和“延伸时柔软”。当用LLDPE替代LDPE时薄膜挤塑设备和条件必须做修改。
LLDPE的高粘度要求挤塑机有更大的功率.并提供更高的熔体温度和压力。模口隙距必须加宽以避免由于产生高背压和熔体断裂而降低产量。LDPE和LLDPE的一般模口隙距尺寸分别是O.024~0.040in.和0.060-0.10in。LLDPE的“延伸时柔软”的特性在吹膜过程中是一个缺点。LLDPE的吹塑薄膜膜泡不象LDPE的那么稳定。一般的单唇风环对LDPE的稳定足够使用.LLDPE的*的膜泡要求更完善的风环来稳定。用风环冷却内部膜泡可增加膜泡稳定性,同时在高生产率下提高薄膜生产能力。除了膜泡的更好冷却外,很多薄膜生产厂采用与LDPE共混方法以增强LLDPE溶道理上,LLDPE的挤塑可以在现有LDPE薄膜设备上完成。
当LDPE的共混物中LLDPE的浓度达50%时。加工99%LLDPE或富含LLDPE的与LDPE共混材料时,采用一般的LDPE挤塑机,必需改进设备。根据挤塑机的寿命,要求改进的可能是加宽模口隙距,改良风环,修改螺杆设计以更好挤出,必要时应增加电机功率和转矩。对于注塑应用,一般不需改进设备,但加工条件需达佳化。滚塑加工要求LLDPE研磨成均匀颗粒(35筛孔)。加工过程包括用粉末状LLDPE填满模具,加热并双轴向地旋转模具使LLDPE均匀分布。冷却后产品从模具中移出。(1)结晶性能是聚乙烯结晶性聚合物。不同密度的聚乙烯结晶度也不相同。结晶度与密度呈线,它们对聚乙烯的许多性能有显著影响。鉴于聚乙烯短支链的存在会干扰主链的结晶。
因此增加短支链就会破坏结晶和降低密度。均聚的高密度聚乙烯含有极少的短支链,所以它的结晶度高,密度也高。LLDPE与HDPE虽同属线型聚乙烯,但LLDPE是乙烯与α-烯烃共聚而成的。由于LLDPE所含的共聚单体比高密度的共聚物多,因而LLDPE的线型主链上有很多的短支链,度都低;再因其短支链的类别和数目是随不同的共聚单体而异,若共聚单体的碳原子数多,在共聚物中含量也多,则该共聚物的密度下降也大。(2)热性能聚乙烯受热以后,随着温度的升高,结晶部分逐渐减少,当结晶部分消失时,聚乙烯就融化,此时的温度即为熔点。聚乙烯的密度升高,结晶度升高,其熔点也随之升高,所以密度不同的聚乙烯,其熔点也不同。
LLDPE的熔点为120~125℃,介于HP-LDPE与HDPE之间。不同共聚单体的LLDPE,其熔点高低随其共聚单体的碳原子的增减而变动,碳原子数增多熔点升高。由于LLDPE的熔点比HP-LDPE高,故其模型制品可在较高温度下脱模,而且又快又干净。因LLDPE的熔点范围比HP-LDPE窄,故LLDPE的薄膜热封性能好,热合强度也高。聚乙烯在温度升高时的流动性和在增加荷重时的变化,主要受分子量的影响。由于测定聚乙烯的熔体流动速率比测定分子量容易,因而通常以熔体指数(MI),或熔体流动指数(MFI)来表示聚乙烯的分子量特性。在熔融状态下,聚乙烯的熔体粘度是分子量的函数,它随分子量的增高而加大。当分子量相同时。
温度升高则熔体粘度降低。在常温下聚乙烯随密度的不同而有不同的柔韧性。在低温下聚乙烯自然具有良好的柔韧性,其脆析温度较低,这与其分子量有关。当聚乙烯的分子量增高时,其脆化温度下降,其极限值为-140℃。在分子量相同的情况下,线型结构的LLDPE与HDPE的熔体粘度要比非线型结构的HP-LDPE大。在熔体指数相同的情况下,HP-LDPE的熔体粘度明显低于LLDPE和HDPE,因此,前者加工时的熔体流动性明显好于后两者,螺杆负荷小,发热量也小。(3)抗环境应力开裂和抗蠕变性能从聚乙烯树脂的实用性来看,抗环境应力开裂(ESCR)性能是重要的物性指标之一。聚乙烯ESCR性能因支链的增加、密度的降低而得到大大的改善。
在3种不同的聚乙烯熟知中,LLDPE的许多性能介于HP-LDPE和HDPE之间,但其ESCR性能却居三者。碳6和碳8高碳α-烯烃共聚的LLDPE,因其支链的增加,其ESCR值明显优于碳4共聚的LLDPE。另一个受短支链增加、密度降低影响的性能是抗蠕变性或承受荷重的能力。这个性能在聚合物的使用上同样非常重要。只要密度稍稍下降一点,抗蠕变性就得到很大的改善。可以说,增加乙烯的短支链,降低乙烯的密度而得益就是提高了ESCR性能和抗蠕变性。(4)热氧老化和光氧老化性能聚乙烯由于其分子结构上和聚合物中所含的微量杂质等内因,以及受大气环境和成型加工条件等外因的影响,会产生热氧老化和光氧老化。这些老化反应按自由基键式反应机理进行。
结果导致聚乙烯发生降解反应为主的不可逆的化学反应,而使其性能变坏乃至失去使用价值。聚乙烯在氧气的存在下受热时易发生热氧老化作用,这种热氧老化过程具有自动催化效应,因此当升高温度时,氧化加速进行,它可使聚乙烯的电绝缘性能变坏。此外,ESCR、伸长率等性能也会降低,并且脆性增加,严重时还会发生特臭气味。氧化作用的影响与受热时间长短有关,例如将高密度聚乙烯制成的容器经短时间受热,其使用价值并无任何降低,如果将其制成的电缆在60℃长时间受热,则其电绝缘性能会显著降低。聚乙烯受日光中紫外线的照射和空气中氧的作用,使其分子中的羰基含量增加而发生光氧老化作用,这种光氧老化作用是在常温下进行的,它可使聚乙烯分子解聚。
并生成一部分支链体型结构。因此,为了防止或减慢光氧老化的作用,应在聚乙烯中添加具有遮蔽光作用的稳定剂,如炭黑或紫外线吸收剂。聚乙烯在受热成型加工过程中,特别是与大量空气接触的情况下,例如压延过程中或挤出、注射成型时,由于受热氧化而使聚乙烯的机械性能降低,加了抗氧化剂后虽可部分防止,但仍不能避免,因此改进聚合工艺及成型加工方法,以及采用改性的方法,可提高聚乙烯受外因作用的稳定性。(5)聚乙烯的介电性能纯的聚乙烯不含极性基因,因此具有良好的介电性能。聚乙烯的分子量对其介电性能不发生影响,但聚乙烯中若含有杂质,如催化剂、金属灰分及分子中存在极性基团(羟基、羰基)等,则对其介电性能如介电常数、介电耗损(介电损耗角正切)等会发生不良影响。