起订量:
油墨污水处理设备
延保会员
生产厂家常州天环净化设备有限公司是一家生产污水设备、废气设备制造商,公司坐落于江苏省常州新北吕墅东路2号
公司主要的业务领域为:污水处理设备生产、废气处理设备生产及粉尘处理设备生产等
目前天环净化已取得污水、废气处理行业相关的技术,环保行业品牌,公司拥有员工80余人,为用户更经济更合理的污水和废气治理解决方案。
企业文化:
企业目标:我们所做的一切都是让客户满意
公司宗旨:我们卖的不是产品,而是信誉
管理理念:高薪、严管、高效
工作方法:管理--质量--信誉--生存--发展
经营策略:凭诚心开拓市场,靠质量招揽客商
人才战略:量才适用,人尽其才
公司制度:制度面前人人平等
油墨污水处理设备
目前,国内外含果胶废水的处理方法主要有复合絮凝剂处理、混凝吸附法处理、果胶酶处理、生物接触氧化法处理等方式。
咖啡粗加工废水含大量果胶,果胶在适宜条件下其溶液能形成凝胶和部分发生甲氧基化,残留的羧基单元以游离酸的形式存在或形成铵、钾、钠和钙等盐。果胶在碱性环境下具有不稳定的特点,同时,高浓度的碱性金属盐通常会使果胶的粘度下降,二价或三价金属盐的存在可以抑制果胶的溶解性。结合盐析法利用果胶分子结构中的羧基被铝、铜、锌、钾等金属离子中和生成不溶于水的果胶盐而从溶液中分离出来的机理,根据凝土半地上式,结构尺寸为2.7m×0.8m×2.0m。设置3mm不锈钢人工格栅1套。
(2)调节池兼事故池(新建)。
1座,钢筋混凝土地埋式,结构尺寸为8.0m×8.0m×4.8m,有效水深4.0m。设置提升泵2台,1用1备,流量为10m3/h,扬程为10m,功率为0.75kW;潜水搅拌器4台,叶轮直径为260mm,功率为0.75kW。
(3)混凝沉淀池(原有改造)。
1座,钢筋混凝土半地上式,结构尺寸为5.4m×5.0m×2.0m,有效水深1.5m。设置NaOH、PAC、PAM加药装置各1套,流量为60L/h;螺杆泵2台,流量为5m3/h,扬程为80m,功率为1.5kW。
(4)厌氧池(新建)。
1座,钢筋混凝土半地上式,结构尺寸为3.0m×5.0m×3.5m,有效水深为3.2m,污泥负荷为0.3kg[BOD5]/(kg[MLSS·d])。池体内挂组合填料,直径为150mm,高度为2m,共30m3;内循环搅拌泵2台,流量为10m3/h,扬程为10m,功率为0.75kW。
(5)缺氧池(新建)。
钢筋混凝土半地上式,结构尺寸为3.00m×5.25m×3.50m,预缺氧区尺寸为3.00m×2.00m×3.50m,有效水深为3.0m。池体内挂组合填料,直径为150mm,高度为2m,共31.5m3;预缺氧区设置内循环搅拌泵、污泥回流泵各1台,流量为10m3/h,扬程为10m,功率为0.75kW。
(6)接触氧化池(原有改造)。
废水。铅离子作为蓄电池废水的主要输出的重金属离子,若不妥善处理排放至环境,将会对环境造成严重的污染,危害人们健康。目前铅酸电池废水的处理方法主要有物理处理法和化学处理法和生物法三大类。
1、物理处理方法
1.1 吸附法
吸附法作为常用的铅蓄电池废水的处理方法之一,其简单高效,产生污泥量少,一直在去除重金属和难降解污染方面有着优势。其主要分为物理吸附和生物吸附。物理吸附主要有常见的活性炭、树脂和电气石等,而其他物理吸附剂以及生物吸附剂能得到实际推广应用很少。张青等研究发现当电气石粒径为0.5μm,反应pH=6.0,吸附时间为20min时,用于处理铅初始质量为18~41mg/L的蓄电池废水,铅的去除率可达99.5%。
电气石在国外水处理行业盛行,在我国废水处理中较少应用。因此,开发高效的吸附材料应用于重金属废水中一直是研究者的热点方向。Tao等以污泥和甘蔗渣为原料制备对蓄电池废水中的Pb(II)吸附的吸附剂,在800℃下热解0.5
为2.62μm,去除率稳定且约为99.60%。
柳健等以实际蓄电池废水作为研究对象来研究化学沉淀法的工况,研究表明:
(1)对于实际铅酸蓄电池废水的pH为7.5~11.5;
(2)固体悬浮物的吸附作用和共沉淀作用都能使使废水中的铅去除更快更
(3)温度在合适范围内升高有利于实际废水中Pb(II)的去除。
2.2 絮凝法
絮凝法是指在铅酸蓄电池废水中投加一定量絮凝剂凝聚水中金属离子。絮凝剂的种类繁多,主要分为无机絮凝剂、有机絮凝剂、微生物絮凝剂和复合絮凝剂几种。而絮凝法分为化学絮凝法和电絮凝法。
无机-有机复合絮凝剂具有电中和以及吸附架桥能力,絮凝效果更为突显。尽管复合絮凝剂也存在难降解、污染环境的问题,但能应用水质的范围广,药品使用量少,效率高,仍不失为是一种优选的絮凝剂。尹大伟研发的PAC-CTS复合絮凝剂用于处理60mg/L含铅、铜的合成废水,当调节pH=8、投加量为5mg/L时Pb2+去除率为72%。PAC-CTS的协同作用能提高絮凝效果以及降低投药量。
油墨污水处理设备 而电絮凝法是电解法与化学絮凝法的结合体,利用可溶性阳极在外电流作用下被溶蚀、氧化生成大量阳离子,再经过水解、聚合作用生成一系列多核胶体达到去除铅离子的效果。
陈寒秋等采用电絮凝技术处理后,连续两个月出水水质检测结果表明,废水经电絮凝法深度处理系统中的Pb日均去除率可达到97.50%。电絮凝法具有设备占地面积小,操作简便、能实现废水的深度处理等优点,缺点是耗电量大、同时需要加入大量电解质。耗电量低、具有周期换向的高压脉冲信号电化学反应器的电絮凝法将是今后研究的方向。
2.3 电解法
铅蓄电池废水中的电解法是指应用电解的原理,使废水中的铅离子得到电子还原为金属铅,是一种实现废水净化且无害的方法。但是该方法运行操作难度大,目前一般在高浓度的含铅废水中应用。有研究人员提出了三维电解的思路,研究发现以泡沫铜较为阴极的三维电极明显优于以不锈钢板的二维电极,且铅的回收率可达到85%。三维电极因其电极表面积增大,低电流密度仍能运行和浓差极化小特点,被视为潜力的蓄电池废水处理方法。
3、组合工艺
关于铅酸蓄电池废水处理方法众多,各有其优缺点,要达到深度处理且有效防治水体中的铅污染,光靠一种技术是难以实现的。其中絮凝+沉淀/气浮是蓄电池废水处理流程中应用较为普遍的操作单元之一,但笔者认为结合实际情况,联合其他技术共建合理的处理工艺体系非常必要。
笔者在查看文献中发现针对pH3~5,COD150mg/L,Pb2+在24~29左右的废水,近几年大体上均采用混凝沉淀和吸附剂吸附的组合工艺。王雅均等设计混凝沉淀+石英砂过滤处理铅酸蓄电池废水,实际运行中还是存在一定量的重复利用尾水需外排,这造成一定工序繁杂。而后期工艺改造,大多以活性炭吸附来取代,在一定程度上尽量避免了外排的出现。
蒋克彬等人采用混凝沉淀(以NaOH作为沉淀剂)+活性炭吸附的处理工艺来验证铅酸蓄电池厂废水的可行性。刘秀伟等依据所调研的铅酸废水水质以及出水标准,选择单一的物理、生物以及化学处理方法等都无法满足要求;进而选择采用中和—混凝沉淀—活性炭吸附的组合工艺来处理后,出水COD<50mg/L,Pb2+<0.9mg/L,满足《污水综合排放标准》的一类标准要求,且此组合工艺操作方便、设备使用时间长、运行成本低。孟祥超等则采用“二级沉淀+生化+活性炭过滤”组合工艺处理。其主控因素是pH。在碱性环境下废水进行混凝沉淀处理除铅,出水后调节pH至中性。而所采用的“生化+活性炭过滤”工艺是起到深度处理的作用。
h,得到表面积为806.57m2/g的有机官能团。研究表明,在pH=4.0的条件下,60%硝酸时对Pb(II)的吸附量。Zhou[6]等采用简单的一步溶胶——凝胶法制备了海绵状的聚硅氧烷氧化石墨烯(PSGO)凝胶吸附剂用于去除废水中的铅。研究发现对Pb(II)的吸附量达到256mg/g。其具有优异的机械强度和高效的吸附/再生能力,可重复使用性。在静态处理工艺中,经过5个循环后,实际工业废水中Pb(II)可由3.225mg/L将至0.01mg/L以下。值得注意的是,在固定床柱中原位再生PS-GO凝胶吸附剂是可行的,具有污泥量少的优点。可作为大规模吸附技术处理实际重金属废水的技术。
1.2 膜分离法
膜分离方法是利用选择性透过原理开展的,使Pb(II)和悬浮物和有机分子等其他污染物被截留而水分子通过膜孔实现净化。在铅蓄电池废水中使用较多的膜分离法有液膜,超滤和反渗透等,其具有操作方便、效率高、渗透量大和不易产生二次污染等优点。
其中胶团强化超滤技术(MEUF)是指向废水中加入适量表面活性剂,达到一定浓度形成胶团,使水中的重金属吸附或键合在胶团中,并被超滤膜截留。张志彬等探讨鼠李糖脂强化超滤技术对含铅废水的处理效果。研究表明,影响重金属离子铅去除率因素主要是pH值,鼠李糖脂浓度次之。其条件为鼠李糖脂浓度为8CMC,pH=9,操作压力为300kPa,Pb(II)去除率可达到89.66%。国外也有采用为微纳米气泡技术(MNBS)对含铅及强酸性等重金属工业水体(譬如铝(14.967mg/L)、铅(4.227mg/L)、强酸性(pH为0.55))进行处理。其中空气压力为90Pa,MNB的尺寸为7μm,水流量为4.67L/min。应用微纳米气泡技术处理不同浓度的铅废水,其研究结果表明,铅的去除率能达到93.75%以上。
反渗透处理方法具有成本低廉,处理工艺稳定可靠的特点,目前其已经在含铅废水中得到广泛应用。李红艺等[11]通过调节pH值,然后依次加入Na2S、PAC、PAM工艺,对铅酸电池厂反渗透处理浓水进行铅离子、镉离子的有效去除进行研究。研究表明,pH调节为9.5,依次加入200mg/LNa2S、50mg/LFeSO4、10mg/L聚合氯化铝(PAC)、5mg/L聚丙烯酰胺(PAM)时,浓水中Pb2+、Cd2+被沉淀剂去除效率分别为98.2%、95.8%。这让反渗透浓水难以处理的难题得以缓解。
1.3 离子交换法
离子交换法是靠交换剂自身的自由离子与被处理溶液中离子交换实现的。一般有离子交换树脂、沸石等。近些年来,各种各样新兴树脂或优化后的商业树脂层出不穷。而离子交换树脂对于金属离子而言,是一种良好吸附剂,结合铅蓄电池废水酸性,铅浓度低的水质特点,适合使用离子交换树脂来吸附Pb2+,进而通过化学沉淀处理技术除铅,并且铅泥可直接回收。李冰璟等将螯合
1座,钢筋混凝土半地上式,一级接触氧化区尺寸为5.0m×4.9m×2.0m,有效水深为1.7m,HRT为9.8h,二级接触氧化区尺寸为5.0m×4.9m×2.0m,有效水深为1.7m,HRT为9.8h,污泥负荷为0.06kg[BOD5]/(kg[MLSS]·d)。设置混合液回流泵2台,1用1备,流量为15m3/h,扬程为15m,功率为1.5kW;池体内挂组合填料,直径为150mm,高度为1m,共50m3;配三叶罗茨鼓风机2台,1用1备,风量为7.54m3/h,风压为34.3kPa,功率为7.5kW。
(7)二沉池(新建)。
采用斜管沉淀池,钢筋混凝土半地上式,结构尺寸为3.0m×3.0m×3.5m(其中絮凝区净尺寸为3.0m×0.8m×3.5m;斜管沉淀区净尺寸为3.0m×2.0m×3.5m),设计表面负荷为0.7m3/(m2·h),斜管直径为50mm,共6m2。设置PAC、PAM加药装置各1套,流量为60L/h;污泥泵1台,流量为10m3/h,扬程为10m,功率为0.75kW。
(8)中间水池。
钢筋混凝土半地上式,结构尺寸为2.0m×3.0m×3.5m。配置多介质过滤器提升泵2台,1用1备,流量为15m3/h,扬程为30m,功率为4kW。
(9)回用水池(新建)。
钢筋混凝土半地上式,结构尺寸为3.0m×3.0m×3.5m,设置多介质过滤器反冲洗泵2台,1用1备,流量为32m3/h,扬程为35m,功率为5.5kW。
(10)污泥浓缩池(原有改造)。
1座,钢筋混凝土半地上式,结构尺寸为5.4m×2.3m×2.0m。设置螺杆泵2台