工业废气处理装置设备_有机废气处理装置

首页>过滤/风机/离心机/锅炉/换热>风机>高压鼓风机

工业废气处理装置设备_有机废气处理装置

型号
广东大辰环境工程有限公司

免费会员 

生产厂家

该企业相似产品

废气处理设备_有机废气治理

在线询价

废气设备治理_有机废气处理设备

在线询价

有机废气的处理_废气治理设备

在线询价

废气处理设备_有机废气治理方法

在线询价

废气处理设备厂家_油漆废气处理方法

在线询价

有机废气处理设备_工业废气治理方法

在线询价

环保废气处理设备_工业有机废气处理

在线询价

有机废气处理成套设备_环保废气治理装置价格

在线询价
废气处理设备,工业除尘设备,工业污水处理设备

广东大辰环境工程有限公司是专业环保设备制造厂家,全国数十家大型环保公司*设备供应商。公司专注环保事业十余年,目前已发展成为华南地区优秀的集研发设计、制造安装、销售及服务于一体的高新环保设备生产企业。通过ISO9001:2000质量体系认证、ISO14000环境体系认证、中国环境保护产品认证(CEP认证),荣获“中国环境工程行业”;“中国环保VOCS 行业催化燃烧品牌”; “VOCS催化燃烧云计算智能自动控制系统V1.0”计算机软件著作权登记证书等。

公司注册资金1000万元人民币,占地面积5000m2,主营废气环保设备,年产值5000万元,主要产品有:RCO、CO催化燃烧装置、治理废气的UV光解净化器、等离子净化器、等。

详细信息

  工业废气处理装置设备

工业废气处理装置设备

  特点

  1、废气处理设备阻力低:在保证足够气液接触面积基础上,工业废气净化塔选用空气动力特性的填料品种及结构形式, 使设备阻力在额定风量下不超过40毫米水柱,是国内多种填料汲取塔中阻力的一种。这对于配用耐腐蚀低压通风机极为有利。

  2、废气处理设备占地面积小:工业废气净化处理塔 采纳PP、FRP等材质,将塔体、汲取液槽、循环泵、汲取液管道系统组合成一套完整的工业废气处理设备,结构紧凑,便于现场安装及操作治理,占地面积小,无论对新建工程还是技改项目都可适应。

  3、废气处理设备适用范围广:化工、轻工、印染、医药、钢铁、机械、电子、仪表、电镀等工业部门生产过程中排放的有机废气、 硝酸、  氢氟酸等尾气及硫氧化物(SOx)、氮氧化物(NOx)、碳氧化化物(CO、CO2)、(HCN)等酸性气体, 采纳工业废气净化设备,都可得到中意的效果。

  4、废气净化效率高:酸(碱)雾废气净化塔 采纳二级逆向喷淋,填料比表面积大,由试验研究确定的气比保证了性能稳定,对多种浓度的酸性(或碱性)废气净化效率均可达85%~95%。

  原理

  利用高能高臭氧UV紫外线光束分解空气中的氧分子产生游离氧,即活性氧,因游离氧所携正负电子不平衡所以需与氧分子结合,进而产生臭氧。

  UV+O2→O- O*(活性氧)O O2→O3(臭氧),臭氧对有机物具有的氧化效果,对恶臭气体及其它刺激性异味有的清除效果。

  恶臭气体利用排风设备输入到本净化设备后,净化设备运用高能UV紫外线光束及臭氧对恶臭气体进行协同分解氧化反应,使恶臭气体物质其降解转化成低分子化合物、水和二氧化碳,再通过排风管道排出室外。

  利用高能UV光束裂解恶臭气体中细菌的分子键,破坏细菌的核酸(DNA),再通过臭氧进行氧化反应,*达到脱臭目的。
 

  有机废气处理装置
 

  工业有机废气处理方法

  VOC工业有机废气的处理方法和处理装置

  目前常用的处理方法有吸收法、冷凝法、吸附法、生物法、热氧化法、等离子体法等,正在开发的有电化学法、膜分离法、光催化法、电子床加热法等。

  欲选择合适的一种处理方法(或几种方法组合),最终得到处理方法,需要综合考虑以下因素:

  以下简要介绍目前常用的VOC处理方法和处理装置:

  (1)吸收法。吸收法是利用某一VOC易溶于特殊的溶剂(或添加化学药剂的溶液)的特性进行处理的一种方法。、常见到的溶剂是水。为了增大VOC与溶剂的吸收率和接触面积,这个过程平常都在装有填料的吸收塔中完成。

  (2)冷凝法。对于高浓度VOC,能够使其通过冷凝器,气态的VOC降低到沸点以下,凝结成液滴,再靠重力效果落到凝结区下部的贮罐中,从贮罐中抽出液态VOC,就能够回收再利用。这种方法对于高浓度、须回收VOC具有较好的经济效益。

  (3)吸附法。吸附法是利用某些具有从气相混合物中有选择地吸附某些组分能力的多孔性固体(吸附剂)来去除VOC的一种方法。目前用以处理VOC的吸附剂有活性炭和活性碳纤维,所用的装置为阀门切换式两床(或多床)吸附器。这种方法对于各种浓度、须回收的溶剂类VOC具有显然的经济效益。

  (4)生物法。生物法是利用微生物分解VOC的一种方法。所用的装置为生物过滤器,该法要占用较大的空间。生物法平常用于处理低浓度VOC。

  (5)等离子体法。其基本原理是:通过陡前沿、窄脉宽(RS级)的高压脉冲电晕放电,在常温常压下获得非平衡等离子体,即产生大量的高能电子和O·、OH·等活性粒子,对VOCs分子进行氧化、降解反应,使VOCs最终转化为无害物。

  3氧化法处理VOC

  对于有毒、有害、不须回收的VOC,热氧化法是一种较*的处理方法。它的基本原理是VOC与O2发生氧化反应,生成CO2和H20,化学方程式如下

  aCHO +bQ——cCO2+dH2O

  这种氧化反应很像化学上的燃烧过程,只不过由于VOC的浓度太低,所以反应中不会产生可见的火焰。

  氧化法平常通过以下两种方法使氧化反应能够顺利进行:一是加热,使含VOC的废气达到氧化反应所需的温度;二是使用催化剂,氧化反应在较低的温度下在催化剂表面进行。

  所以氧化法可分为以下两种:

  (1)催化氧化法。目前所用的催化剂主要分为贵金属催化剂和非贵金属催化剂,贵金属催化剂主要是铂和钯,以极细颗粒的形式分布在催化剂载体上,载体平常为金属或陶瓷的蜂窝和散装填料。典型的非贵金属催化剂是过渡元素金属氧化物(如二氧化锰)与粘合剂混合后制成各种形状的催化剂。为了防止催化剂中毒后失掉催化活性,需要在处理前清除能使催化剂中毒的物质(如Pb、Zn、As、P、Hg等)。如果舍VOC废气中的催化剂毒物和遮盖催化剂的物质得不到清除,则不能使用催化氧化法。

  (2)热氧化法。热氧化法可分为三种:热力燃烧式、间壁式和蓄热式。它们的主要区别在于热量回收方法的不同。三种方法都能够和催化法结合起来以降低反应温度。

  a.热力燃烧式热氧化器。热力燃烧式热氧化器平常指的是气体焚烧炉。它由助燃剂、混合区和燃烧室组成。助燃剂(天然气、石油等)作为辅助燃料,燃烧产生的热在混合区对VOC废气进行预热,燃烧室为预热后的废气提供足够大的空间和足够长的时间以完成最终的氧化反应。

  在供氧充足的前提条件下,氧化反应的程度(影响最终的VOC去处率)取决于“三T条件”:反应温度(Temperature)、驻留时间(Time)、湍流混合情况(Turbulence)。这“三T条件”是互相联系的,在一定范围内改善一个条件可使还有两个条件降低。热力燃烧式热氧化器的一个缺点是辅助燃料价格太高,致使装置的操作费用很高。

  b.间壁式热氧化器。间壁式热氧化是指在热氧化装置中加入间壁式热交换器,热交换器把从燃烧室排出的酷热的天气气体所带的热量传递给氧化装置进口处的低温气体,预热后发生氧化反应。由于目前的间壁式热交换器可获得85%的热回收率,所以极大地降低了辅助燃料的耗费。间壁式热交换器平常设计成管式、壳式或板式。由于平常的热氧化温度要保持在800oC-1000oC,所以间壁式热交换器需要由耐热、耐腐蚀的不锈钢或合金用料制成。这就使得间壁式热交换器的造价很高,这是问壁式热氧化器的一个缺点。同时用料的热应力也不易清除,这是间壁式热氧化器的另一个缺点。

  c.蓄热式热氧化器。蓄热式热氧化器(RegenerativeThermal Oxidizer,以下简称RTO焚烧炉),是在热氧化装置中加入蓄热式热交换器,预热VOC废气,再进行氧化反应。尾随蓄热用料的发展,目前蓄热式热交换器的热回收率已能达到95% 以上,而且占用空间越来越小。这样辅助燃料的耗费很少(甚至不用辅助燃料,且当VOC的浓度达到一定值以上时,还可从RTO焚烧炉输出热量)。同时,由于目前的蓄热用料都选用陶瓷填料,所以可处理腐蚀性或附有颗粒物的VOC废气。

  4膜分离技术

  有机气体膜分离是一种高效的新型分离技术,其流程简单、回收率高、能耗低、无二次污染,是一种非常有前途的技术。

  膜分离技术的基础就是使用对有机物具有渗透选择性的聚合物复合膜。该膜对有机蒸气较空气更

  易于渗透10~100倍。当废气与膜用料表面接触时,有机物能够透过膜,从废气中分离出来。为保证过程的进行,在膜的进料捌使用压缩机或渗透侧使用真空泵,使膜的两侧构成压力差,达到膜渗透所需的推动力。

  分离膜是由涂层和支撑层组成的复合膜,涂层提供分离性能,而多孔支撑层提供机械强度。

  涂层用料平常为具有高度选择性的聚二甲基硅烷,该层决定膜的分离性能,而支撑层也对膜的性能有重要影响。常用的支撑层用料为聚砜、聚醚砜、聚酰亚胺、聚偏氟乙烯。目前提供VOcs分离膜的厂家—— MTR 和Nitto提供卷式膜,GKSS提供板式膜。卷式膜更紧凑和更经济,可大大地降低设备费用;而板式膜能够提供很好的流动分布和降低渗透侧压力降,MTR的研究开发取得了突破,能够生产大的膜管,直径203.2 him(8英寸),单根膜管面积达2Orfl ,使系统处理能力大大地提高,有足够的能力在大型工业装置上使用。

  4.1 膜分离系统

  的膜分离过程为单级膜分离系统,直接压缩废气并使其通过膜表面,来实现VOCs的分离;但因为分离程度很低,故单级很难达到分离要求。

  开发了一种新型的集成膜分离系统。该技术结合压缩冷凝和膜单元两种技术的特点来实现分离。

  首先,用压缩机先将有机废气提高到一定压力。压缩的有机废气进人冷凝器被冷却,部分VOCs冷

  凝下来,直接进到储罐,以进行循环和再用。离开冷凝器的非凝气体仍具有一定的压力,用做膜渗透的驱动力,使膜分离不再需要附加的动力;该非凝压缩气中,仍附有相当数量的有机物。当压缩气通过有机选择性膜的表面时,膜将气体分成两股物流:脱除了VOCs的未渗透侧的大部分净化气直接排放;渗透物流为富集有机物的蒸汽,该渗透物流循环到压缩机的进口。由于VOCs的循环,回路中VOCs的浓度快速上升,直到进人冷凝器的压缩气达到VOCs凝结浓度,这样系统就达到稳态。系统平常能够从进料气中移出vOcs达到99% 以上,使排放气中的VOCs达到环保排放标准。

  该循环系统的特点是未渗透物流的浓度独立于进料气的浓度,该浓度由冷凝器的压力和温度决

  定。

  4.2 膜分离系统设计和操作参数

  膜分离系统的设计主要考虑膜用料和操作条件两方面因素,主要设计参数有膜的选择性、压力比、净化率。主要操作参数有:①有机废气进料浓度;②进料侧和渗透侧的压力;③温度和爆炸极限;④操作方法(间歇或连续);⑤净化率。

  4.2.1 膜的选择性

  膜的选择性为待分离两组分的渗透性之比,它为两组分的扩散系数之比(称为移动选择性)与吸着

  系数之比(称为吸着选择性)的乘积。移动选择性反映分子在膜用料中的不同平均速度,分子尺寸增大,则速度降低了吸着选择性反映溶解在膜中的分子数。它正比于两种气体的相对凝结性。

  吸着系数随渗透物凝结性增加而增加,即尾随分子直径的增大而增加,这样易凝结的大分子,其吸着系数大,碳氢化合物较非凝性气体的吸着系数更大。

  橡胶态聚合物吸着选择性占主导,渗透性随渗透物尺寸增大而增加。硅橡胶对芳烃、酮和卤化碳氢化合物的渗透选择性均较高,平常为30—60。

  4.2.2 压力比

  因为压力是膜分离的动力,故另一个非常重要的参数是压力比(定义为总的进料压力/总的渗透侧

  压力)。压力比与选择性共同确定通过膜所得到的富集溶剂的情况。

  对实际情况,可达到的压力比有一定的限制,压缩进料到非常高的压力,或在渗透侧有一个非常高的真空,需要大量的能量和昂贵的泵。故平常的压力比为10—30。

  通过调整膜面积、冷凝器的温度及通过膜的压力比,MTR的循环膜分离设计能够很容易控制最终排放气中有机物浓度。

  排放气中有机物浓度随膜面积增大而快速减少。或尾随膜面积减少而快速增大;当面积减少到一

  定程度.则不产生分离,排放气浓度等于进料气的浓度。

  冷凝器的温度降低,浓缩所需要的露点温度也降低,更多的VOCs在冷凝器中拎凝,能够显然地降低进入膜单元的有机物浓度。然而实际上,由于气体中的水蒸气会产生结冰问题,低于O C的拎凝温

  度很少使用。

  压力比对排放气浓度的影响也与膜面积相似,增大压力比.排放气浓度显然降低,但压力比不能小于某个值,否则不会产生分离。

  4.3膜分离技术的使甩范围

  现在世界上已有近60套膜分离VO 的装置。在美国大部分装置用来回收VOCs、HCFCs、氯乙烯等高价值产品;在欧洲和日本主要从石油运输操作中回收碳氢化合物。

  膜技术差不多能够用来回收各种高沸点的挥发有机物,如三苯、丁烷以上的烷烃、氯化有机物、氟氯碳氢化台物、酮、酯等 它可用于各种行业.如PVC加工中回收VCM,聚烯烃装置中回收乙烯、丙烯单体制冷设备、气雾刺及泡辣生产中产生的CFCs和HCFCs的回收,印刷中产生的甲苯等的回收。

  工业有机废气的治理在环保治理工程领域发展时间不长,目前各种治理技术、工艺仍然不够成熟,或多或少地存在一些缺陷,如运动不稳定、能耗高、管理维护工作量大等。尾随环保技术的接连接连不断发展,工业有机废气治理的新技术新成果将接连接连不断出现,近些年以来出现了电晕法、臭氧分解法、等离子体法等。今后,工业有机废气治理技术将朝着设备制造成本低、能耗低、管理维护简单等方向发展。

同类产品推荐

相关分类导航

产品参数

在线询价 在线询价
当前客户在线交流已关闭
请电话联系他 :