aimbiotech 3D培养芯片

aimbiotech 3D培养芯片

参考价: 面议

具体成交价以合同协议为准
2023-07-27 22:14:10
200
产品属性
关闭
世联博研(北京)科技有限公司

世联博研(北京)科技有限公司

初级会员3
收藏

组合推荐相似产品

产品简介

aimbiotech 3D培养芯片

详细介绍

生物力学相关产品及科研服务

  • 细胞或软组织纳米压痕测试分析服务
  • Flexcell细胞拉压流体剪切培养仪
  • 细胞牵引力、内源力测试分析仪
  • 离体或活体在体骨参考点压痕测量分析仪
  • Optical stretcher单细胞高通量形变仪
  • 经济型生物材料力学te性测试分析
  • 细胞组织力学te性定量分析光镊
  • 多功能多材料生物力学te性测试分析系统
  • TGT三维血管软骨皮肤应力培养系统
  • ITI单层细胞静水压力培养系统
  • 血管血流循环模拟系统
  • VCU颅脑损伤仪
  • 三维微流控芯片系统
  • 皮肤弹性测试分析仪
  • 血管生物反应器
  • 肌腱韧带生物反应器
  • 软骨生物反应器
  • 旋转灌流生物反应器
  • 骨组织灌流表型生物反应器
  • 皮肤生物反应器
  • 凝胶支架种子细胞构建生物组织系统
  • 更多

aimbiotech 3D Cell Culture Chip,三维微流控芯片系统现货

  • 1、AIM Biotech 3D细胞培养芯片采用三通道设计,中间为3D凝胶通道,两侧为培养基通道,通过负压吸引快速交换培养基。
    2、芯片透气性好,可有效进行气体交换 3采用标准载玻片尺寸(75 mm x 25 mm),兼容相差显微镜、荧光显微镜和激光共聚焦显微镜 4可实现不同类型细胞共培养。
     

    AIM BIOTECH是新加坡一家专注于创新性工具研发的创业型公司,其应用领域涵盖科学研究、药物开发和临床诊断范畴。AIM BIOTEC为科研市场做出的份贡献是开发出一款易于操作的、模块化的平台,该平台成功地将3D细胞培养纳入了科研人员研究工作体系之中。
    AIM BIOTECH 3D细胞培养芯片概述
    AIM的3D细胞培养芯片透气性好,而且用户可以通过选择不同的水凝胶,在间隔的3D和2D空间进行不同类型细胞的培养。同时可以通过对化学物浓度梯度和流体的调控很好地模拟符合用户te定需求的微环境。

  • 订货信息(备有):

    1、3D Cell Culture Chips DAX-1 (25/box)

    3D Cell Culture Chips   DAX-1   (25/box)

    2、Holders HOL-1 (10/box)

    Holders   HOL-1   (10/box)

    3、Luer Connectors LUC-1 (36/pack)







     

    3D Cell Culture Chip
    3-channel design : 3D gel region flanked by 2 media channels

    • Microscope slide format 75mm X 25mm
    • Compatible with all polymerisable gels including collagen, fibrinogen, Matrigel, etc. and combinations thereof
    • Gas permeable laminate for effective gas exchange
    • Optically clear and compatible with phase contrast, fluorescence and confocal microscopy
    • Enables monotypic or organotypic co-culture models
    • Enables the control of interstitial flow across the 3D gel region
    • Enables the control of chemical gradients across the 3D gel region
    • Sterile & ready-to-use
    • Designed for rapid media exchange through vacuum aspiration with no risk of over-aspiration
    • Designed for modular expansion with AIM Luer Connectors
    • Fits into AIM Microtiter Plate Holders for easy handling and stacking
    GENERAL PROTOCOLS APPLICATION-SPECIFIC PROTOCOLS

    BUY NOW

    Compatible with all polymerisable gels

    Dedicated 3D regions in AIM chips can be filled with collagen, fibrinogen & other hydrogels or Matrigel? & other extracellular matrixes (ECM) to suit your experimental needs. The hydrogels can be used on their own or in combination with other components to form 3D microenvironments of your choice (stiffness, pH and material compositions). 
    The miniature posts that border the 3D region are designed to set up a vertical gel wall with minimal buildup of resistance during the gel filling process. Cells can be homogeneously dispersed or included as aggregates into the gel.

    Gas exchange

    One of the key advantages of PDMS chips is the material's gas permeability, which enables cells cultured within PDMS devices to 'breathe'. However, PDMS absorbs hydrophobic molecules from solution, making it unsuitable for studies investigating hydrophobic drugs, chemicals or biological molecules.
    AIM chips have overcome the problem by using a gas-permeable plastic to laminate the device. Gas exchange takes place effectively, allowing you to set up normoxic or hypoxic culture environments as needed. 

    Optically clear

    AIM chips are made from polymers with an excellent light transmittance rate of 92%. You can visualise your experiments with phase contrast, epifluorescence, 2-photon and confocal microscopy. 

    Endothelial cell monolayer in 2D channel forming a vertical wall on collagen gel (confocal)

    Angiogenic sprouts in collagen gel (confocal)

    Enables monotypic or organotypic co-culture models

    Different cell types can be cultured together in the same channel or compartmentalised into different channels, allowing users to design models to represent different biological systems. Future AIM chips will have more 3D & 2D channel designs to cater to your needs.

    Enables the control of interstitial flow across the 3D region

    The interstitial flow across the 3D hydrogel can be controlled by setting up a pressure gradient between the flanking channels. This can be achieved by having a larger media volume in one media channel than the other, or by setting shear flow regimes that establish a pressure differential. 

    Enables the control of chemical gradients across the 3D region

    A chemical concentration gradient can be set up across the porous 3D hydrogel easily by using a higher concentration of the chemical in a channel and allowing diffusion to take place.  This feature is very useful for studies where directional cues of effectors are critical, including angiogenesis, cell migration and neurite guidance 

    Sterile & ready-to-use

    AIM chips are individually packaged for your convenience. All chips are sterile and are ready for use right out of the package. AIM chips let you focus on your experiments, rather than on device preparation.

    Designed for rapid media exchange through vacuum aspiration with no risk of over-aspiration

    Due to the small culture volumes of microfluidic devices, culture media typically has to be replenished every day. Vacuum aspiration is used to remove old media before pipetting new media into the device. Media ports in AIM chips are designed with troughs to let users rapidly aspirate old media out without the risk of accidentally aspirating all the media & cells from the device. 

     

    Luer Connectors LUC-1 (36/pack)

    Publications

    Many of the publications listed below were conducted on lab-made devices that form the basis of AIM Biotech chips. Papers that employed the commercial chips are marked with '*'.
    TECHNOLOGY

    Key Publications

    1. Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Vickerman V, Blundo J, Chung S, Kamm RD. Lab Chip, 2008, 8, 1468-1477.
    2. Cell migration into scaffold under co-culture conditions in a microfluidic platform. Chung S, Sudo S, Mack PJ, Wan C-R, Vickerman V, Kamm RD. Lab Chip, 2009, 9(2):269-75.
    3. Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels. Shin Y, Han S, Jeon JS, Yamamoto K, Zervantonakis IK, Sudo R, Kamm RD and Chung S. Nature Prot, 7(7):1247-1259, 2012, PMID:
    4. Mechanism of a flow-gated angiogenesis switch: early signaling events at cell-matrix and cell-cell junctions. Vickerman V, Kamm RD. Integr Biol (Camb). 2012 Jun 7. PMID
    5. Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Zervantonakis IK, Hughes-Alford SK, Charest JL, Condeelis JS, Gertler FB, Kamm RD. Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13515-20. Epub 2012 Aug 6. PMID:
    6. Screening therapeutic EMT blocking agents in a three-dimensional microenvironment. Aref AR, Huang RY-J, Yu W, Chua K-N, Sun W, Tu T-Y, Sim W-J, Zervantonakis IK, Thiery JP, Kamm RD. Integr Biol (Camb). 2013 Feb;5(2):381-9. doi: 10.1039/c2ib20209c PMID:
    7. Mechanotransduction of fluid stresses governs 3D rheotaxis. Polacheck WJ, German AE, Mammoto A, Ingber DE, Kamm RD. Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2447-52. doi: 10.1073/pnas.1316848111. Epub 2014 Feb 3. PMID:
    8. Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Jeon JS, Bersini S, Gilardi M, Dubini G, Charest JL, Moretti M, Kamm RD. Proceedings of the National Academy of Sciences, pp. 201417115, 2014
    9. *Ex Vivo Profiling of PD-1 Blockade Using Organotypic Tumor Spheroids. Jenkins RW, Aref AR, Lizotte PH, Ivanova E, Stinson S, Zhou CW, ... Barbie DA. Cancer Discov. 2017 Nov 3. pii: CD-17-0833. doi: 10.1158/2159-8290.CD-17-0833.
    10. 3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes. Campisi M, Shin YJ, Osaki T, Hajal C, Chiono V, Kamm RD. Biomaterials 2018 https://doi.org/10.1016/j.biomaterials.2018.07.014

    Latest Publications

    1. *MBNL1 alternative splicing isoforms play opposing roles in cancer. Tabaglio T, Low DHP, Teo WKL, Goy PA, Cywoniuk P, Wollmann H... Guccione E. Life Science Alliance, Sept 2018 doi:10.26508/lsa.201800157
    2. *3D microfluidic ex vivo culture of organotypic tumor spheroids to model immune checkpoint blockade. Aref AR, Campisi M, Ivanova E, Portell A, Larios D, Piel BP... Jenkins RW. Lab on a Chip, 2018, DOI: 10.1039/C8LC00322J
    3. *Molecular recalibration of PD-1+ antigen-specific T cells from blood and liver. Otano I, Escors D, Schurich A, Singh H, Robertson F, Davidson BR... Maini MK. Molecular Therapy (2018), doi: 10.1016/j.ymthe.2018.08.013.
    4. *Tumor innate immunity primed by specific interferon-stimulated endogenous retroviruses. Cañadas I, Thummalapalli R, Kim JW, Kitajima S, Jenkins RW, Christensen CL... Barbie DA. Nature Medicine 23 July 2018 doi.org/10.1038/s41591-018-0116-5
    5. 3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes. Campisi M, Shin YJ, Osaki T, Hajal C, Chiono V, Kamm RD. Biomaterials 2018 https://doi.org/10.1016/j.biomaterials.2018.07.014
    6. *Assessing Therapeutic Efficacy of MEK Inhibition in a KRASG12C-Driven Mouse Model of Lung Cancer. Li S, Liu S, Deng J, Akbay EA, Hai J, Ambrogio C ... Wong KK. Clinical Cancer Research 2018 doi: 10.1158/1078-0432.CCR-17-3438​
    7. Characterizing the Role of Monocytes in T Cell Cancer Immunotherapy Using a 3D Microfluidic Model. Lee SWL, Adriani G, Ceccarello E, Pavesi A, Tan AT, Bertoletti A, Kamm RD and Wong SC (2018) Front. Immunol. 9:416. doi: 10.3389/ mmu.2018.00416
    8. *Stimuli-Responsive Nanodiamond-Based Biosensor for Enhanced Metastatic Tumor Site Detection. Wang X, Gu MJ, Toh TB, Abdullah NLB, Chow E. SLAS Technol. 2018 Feb;23(1):44-56. doi: 10.1177/2472630317735497. Epub 2017 Oct 11.​
    9. *Protein corona of airborne nanoscale PM2.5 induces aberrant proliferation of human lung fibroblasts based on a 3D organotypic culture. Li Y, Wang PC, Hu CL, Wang K, Chang Q, Liu LJ, Han ZG, Shao Y, Zhai Y, Zuo ZY, Gong ZY, Wu Y. Scientific Reports volume 8, Article number: 1939(2018) doi:10.1038/s41598-018-20445-7
    10. *Functional human 3D microvascular networks on a chip to study the procoagulant effects of ambient fine particulate matter. Li Y, Pi QM, Wang PC, Liu LJ, Han ZG, Shao Y, Zhai Y, Zuo ZY, Gong ZY, Yang X, Yang W. RSC Adv., 2017, 7, 56108–56116
    11. *Ex Vivo Profiling of PD-1 Blockade Using Organotypic Tumor Spheroids. Jenkins RW, Aref AR, Lizotte PH, Ivanova E, Stinson S, Zhou CW, ... Barbie DA. Cancer Discov. 2017 Nov 3. pii: CD-17-0833. doi: 10.1158/2159-8290.CD-17-0833.
    12. *CDK4/6 Inhibition Augments Anti-Tumor Immunity by Enhancing T Cell Activation. Deng J, Wang ES, Jenkins RW, Li S, Dries R, Yates K, ... Wong KK. Cancer Discov. 2017 Nov 3. pii: CD-17-0915. doi: 10.1158/2159-8290.CD-17-0915.​
    13. *A 3D microfluidic model for preclinical evaluation of TCR-engineered T cells against solid tumors. Pavesi A, Tan AT, Koh S, Chia A, Colombo M, Antonecchia E, Miccolis C, Ceccarello E, Adriani G, Raimondi MT, Kamm RD, Bertoletti A. JCI Insight. 2017 Jun 15;2(12). pii: 89762. doi: 10.1172/jci.insight.89762.
    VASCULAR FUNCTIONS
    CANCER BIOLOGY
    IMMUNOTHERAPY
    NEUROBIOLOGY
    STEM CELL BIOLOGY
    MECHANOBIOLOGY
    OTHER MODELS
    REVIEWS

    1. Vascular Functions

    1.1. Angiogenesis

    1. Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Vickerman V, Blundo J, Chung S, Kamm R. Lab Chip, 2008. 8 (9):1468-1477
    2. Surface-Treatment-Induced Three-Dimensional Capillary Morphogenesis in a Microfluidic Platform. Chung S, Sudo R, Zervantonakis IK, Rimchala T, Kamm RD. Advanced Materials, 2009. 21 (47):4863-4867
    3. Transport-mediated angiogenesis in 3D epithelial coculture. Sudo R, Chung S, Zervantonakis IK, Vickerman V, Toshimitsu Y, Griffith LG, Kamm RD. FASEB J., 2009. 23 (7):2155-2164
    4. Determining Cell Fate Transition Probabilities to VEGF/Ang 1 Levels: Relating Computational Modeling to Microfluidic Angiogenesis Studies. Das A, Lauffenburger D, Asada H, Kamm R. Cellular and Molecular Bioengineering, 2010. 3 (4):345-360
    5. Sprouting angiogenesis under a chemical gradient regulated by interactions with an endothelial monolayer in a microfluidic platform. Jeong GS, Han S, Shin Y, Kwon GH, Kamm RD, Lee SH, Chung S. Analytical Chemistry, 2011. 83 (22):8454-8459
    6. In vitro 3D collective sprouting angiogenesis under orchestrated ANG-1 and VEGF gradients. Shin Y, Jeon JS, Han S, Jung GS, Shin S, Lee SH, . . . Chung S. Lab Chip, 2011. 11 (13):2175-2181
    7. Ensemble Analysis of Angiogenic Growth in Three-Dimensional Microfluidic Cell Cultures. Farahat WA, Wood LB, Zervantonakis IK, Schor A, Ong S, Neal D, . . . Asada HH. PLoS ONE, 2012. 7 (5):e37333
    8. Engineering of In Vitro 3D Capillary Beds by Self-Directed Angiogenic Sprouting. Chan JM, Zervantonakis IK, Rimchala T, Polacheck WJ, Whisler J, Kamm RD. PLoS ONE, 2012. 7 (12):e50582
    9. Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels. Shin Y, Han S, Jeon JS, Yamamoto K, Zervantonakis IK, Sudo R, . . . Chung S. Nature Protocols, 2012. 7 (7):1247-1259
    10. In vitro angiogenesis assay for the study of cell-encapsulation therapy. Kim C, Chung S, Yuchun L, Kim M-C, Chan JKY, Asada HH, Kamm RD. Lab Chip, 2012. 12 (16):2942-2950
    11. Complementary effects of ciclopirox olamine, a prolyl hydroxylase inhibitor and sphingosine 1-phosphate on fibroblasts and endothelial cells in driving capillary sprouting. Lim SH, Kim C, Aref AR, Kamm RD, Raghunath M. Integr. Biol., 2013. 5 (12):1474-1484

    1.2. Anti-Angiogenesis

    1. The stabilization effect of mesenchymal stem cells on the formation of microvascular networks in a microfluidic device. Yamamoto K, Tanimura K, Mabuchi Y, Matsuzaki Y, Chung S, Kamm RD, . . . Sudo R. J. Biomech. Sci. Eng., 2013. 8 (2):114-128
    2. Dll4-containing exosomes induce capillary sprout retraction in a 3D microenvironment. Sharghi-Namini S, Tan E, Ong L-LS, Ge R, Asada HH. Sci. Rep., 2014. 4:4031
    3. A quantitative microfluidic angiogenesis screen for studying anti-angiogenic therapeutic drugs. Kim C, Kasuya J, Jeon J, Chung S, Kamm RD. Lab Chip, 2015. 15 (1):301-310

    1.3. Vasculogenesis

    1. Control of Perfusable Microvascular Network Morphology Using a Multiculture Microfluidic System. Whisler JA, Chen MB, Kamm RD. Tissue Engineering Part C: Methods, 2014. 20 (7):543-552
    2. In Vitro Microvessel Growth and Remodeling within a Three-Dimensional Microfluidic Environment. Park Y, Tu T-Y, Lim S, Clement IM, Yang S, Kamm R. Cellular and Molecular Bioengineering, 2014. 7 (1):15-25
    3. Generation of 3D functional microvascular networks with human mesenchymal stem cells in microfluidic systems. Jeon JS, Bersini S, Whisler JA, Chen MB, Dubini G, Charest JL, . . . Kamm RD. Integr. Biol., 2014. 6 (5):555-563
    4. Human Vascular Tissue Models Formed from Human Induced Pluripotent Stem Cell Derived Endothelial Cells. Belair DG, Whisler JA, Valdez J, Velazquez J, Molenda JA, Vickerman V, . . . Murphy WL. Stem Cell Reviews and Reports, 2015. 11 (3):511-525
    5. Elucidation of the Roles of Tumor Integrin β1 in the Extravasation Stage of the Metastasis Cascade. Chen MB, Lamar JM, Li R, Hynes RO, Kamm RD. Cancer Res., 2016. 76 (9):2513-2524
    6. On-chip human microvasculature assay for visualization and quantitation of tumor cell extravasation dynamics. Chen MB, Whisler JA, Fröse J, Yu C, Shin YJ and Kamm RD. Nat Protoc. 2017 May; 12(5): 865–880.
    7. *Functional human 3D microvascular networks on a chip to study the procoagulant effects of ambient fine particulate matter. Li Y, Pi QM, Wang PC, Liu LJ, Han ZG, Shao Y, Zhai Y, Zuo ZY, Gong ZY, Yang X, Yang W. RSC Adv., 2017, 7, 56108–56116

    1.4. Flow Response

    1. Mechanism of a flow-gated angiogenesis switch: Early signaling events at cell-matrix and cell-cell junctions. Vickerman V, Kamm RD. Integr. Biol., 2012. 4 (8):863-874

    1.5. Transendothelial Migration

    1. A versatile assay for monitoring in vivo-like transendothelial migration of neutrophils. Han S, Yan JJ, Shin Y, Jeon JJ, Won J, Jeong HE, . . . Chung S. Lab Chip, 2012. 12 (20):3861-3865

    1.6. Migration

    1. Vascular Endothelial Growth Factor (VEGF) and Platelet (PF-4) Factor 4 Inputs Modulate Human Microvascular Endothelial Signaling in a Three-Dimensional Matrix Migration Context. Hang T-C, Tedford NC, Reddy RJ, Rimchala T, Wells A, White FM, . . . Lauffenburger DA. Molecular & Cellular Proteomics : MCP, 2013. 12 (12):3704-3718
    2. Cell Invasion Dynamics into a Three Dimensional Extracellular Matrix Fibre Network. Kim M-C, Whisler J, Silberberg YR, Kamm RD, Asada HH. PLoS Comput Biol, 2015. 11 (10):e1004535

    1.7. Permeability

    1. Constructive remodeling of a synthetic endothelial extracellular matrix. Han S, Shin Y, Jeong HE, Jeon JS, Kamm RD, Huh D, . . . Chung S. Sci. Rep., 2015. 5:18290
    ↑ Back to the top

    2. Cancer Biology

    2.1. Spheroid Dispersion

    1. Screening therapeutic EMT blocking agents in a three-dimensional microenvironment. Aref AR, Huang RY-J, Yu W, Chua K-N, Sun W, Tu T-Y, . . . Kamm RD. Integr. Biol., 2013. 5 (2):381-389
    2. Validating Antimetastatic Effects of Natural Products in an Engineered Microfluidic Platform Mimicking Tumor Microenvironment. Niu Y, Bai J, Kamm RD, Wang Y, Wang C. Mol. Pharm., 2014. 11 (7):2022-2029
    3. Inhibition of KRAS-driven tumorigenicity by interruption of an autocrine cytokine circuit. Zhu Z, Aref AR, Cohoon TJ, Barbie TU, Imamura Y, Yang S, . . . Barbie DA. Cancer Discov., 2014. 4 (4):452-465
    4. Targeting an IKBKE cytokine network impairs triple-negative breast cancer growth. Barbie TU, Alexe G, Aref AR, Li S, Zhu Z, Zhang X, . . . Gillanders WE. The Journal of Clinical Investigation, 2014. 124 (12):5411-5423
    5. Development of covalent inhibitors that can overcome resistance to first-generation FGFR kinase inhibitors. Tan L, Wang J, Tanizaki J, Huang Z, Aref AR, Rusan M, . . . Gray NS. Proc. Natl. Acad. Sci. USA, 2014. 111 (45):E4869-E4877
    6. Identification of drugs as single agents or in combination to prevent carcinoma dissemination in a microfluidic 3D environment. Bai J, Tu T-Y, Kim C, Thiery JP, Kamm RD. Oncotarget, 2015. 6 (34):36603-36614
    7. Contact-dependent carcinoma aggregate dispersion by M2a macrophages via ICAM-1 and β2 integrin interactions. Bai J, Adriani G, Dang T-M, Tu T-Y, Penny H-XL, Wong S-C, . . . Thiery J-P. Oncotarget, 2015. 6 (28):25295-25307
    8. *Stimuli-Responsive Nanodiamond-Based Biosensor for Enhanced Metastatic Tumor Site Detection. Wang X, Gu MJ, Toh TB, Abdullah NLB, Chow E. SLAS Technol. 2018 Feb;23(1):44-56. doi: 10.1177/2472630317735497. Epub 2017 Oct 11.

    2.2. Extravasation

    1. In Vitro Model of Tumor Cell Extravasation. Jeon JS, Zervantonakis IK, Chung S, Kamm RD, Charest JL. PLoS ONE, 2013. 8 (2):e56910
    2. Mechanisms of tumor cell extravasation in an in vitro microvascular network platform. Chen MB, Whisler JA, Jeon JS, Kamm RD. Integr. Biol., 2013. 5 (10):1262-1271
    3. A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone. Bersini S, Jeon JS, Dubini G, Arrigoni C, Chung S, Charest JL, . . . Kamm RD. Biomaterials, 2014. 35 (8):2454-2461
    4. Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Jeon JS, Bersini S, Gilardi M, Dubini G, Charest JL, Moretti M, Kamm RD. Proc. Natl. Acad. Sci. USA, 2015. 112 (1):214-219
    5. Neutrophils suppress intraluminal NK-mediated tumor cell clearance and enhance extravasation of disseminated carcinoma cells. Spiegel A, Brooks MW, Houshyar S, Reinhardt F, Ardolino M, Fessler E, . . . Weinberg RA. Cancer Discov., 2016. 6 (6):630-649
    6. Warburg metabolism in tumor-conditioned macrophages promotes metastasis in human pancreatic ductal adenocarcinoma. Penny HL, Sieow JL, Adriani G, Yeap WH, See Chi Ee P, San Luis B, . . . Wong SC. OncoImmunology, 2016. 5 (8):e1191731
    7. On-chip human microvasculature assay for visualization and quantitation of tumor cell extravasation dynamics. Chen MB, Whisler JA, Fröse J, Yu C, Shin YJ and Kamm RD. Nat Protoc. 2017 May; 12(5): 865–880.

    2.3. Intravasation

    1. Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Zervantonakis IK, Hughes-Alford SK, Charest JL, Condeelis JS, Gertler FB, Kamm RD. Proc. Natl. Acad. Sci. USA, 2012. 109 (34):13515-13520

    2.4. Flow Response

    1. Interstitial flow influences direction of tumor cell migration through competing mechanisms. Polacheck WJ, Charest JL, Kamm RD. Proc. Natl. Acad. Sci. USA, 2011. 108 (27):11115-20
    2. Mechanotransduction of fluid stresses governs 3D cell migration. Polacheck WJ, German AE, Mammoto A, Ingber DE, Kamm RD. Proc. Natl. Acad. Sci. USA, 2014. 111 (7):2447-2452

    2.5. Invasion and Migration

    1. Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Chung S, Sudo R, Mack PJ, Wan CR, Vickerman V, Kamm RD. Lab Chip, 2009. 9 (2):269-275
    2. Concentration gradients in microfluidic 3D matrix cell culture systems. Zervantonakis I, Chung S, Sudo R, Zhang M, Charest J, Kamm R. International Journal of Micro-Nano Scale Transport, 2010. 1 (1):27-36
    3. A novel microfluidic platform for high-resolution imaging of a three-dimensional cell culture under a controlled hypoxic environment. Funamoto K, Zervantonakis IK, Liu Y, Ochs CJ, Kim C, Kamm RD. Lab Chip, 2012. 12 (22):4855-4863
    4. Hydrogels: Extracellular Matrix Heterogeneity Regulates Three-Dimensional Morphologies of Breast Adenocarcinoma Cell Invasion. Shin Y, Kim H, Han S, Won J, Jeong HE, Lee E-S, . . . Chung S. Advanced Healthcare Materials, 2013. 2 (6):920-920
    5. A three-dimensional microfluidic tumor cell migration assay to screen the effect of anti-migratory drugs and interstitial flow. Kalchman J, Fujioka S, Chung S, Kikkawa Y, Mitaka T, Kamm RD, . . . Sudo R. Microfluid. Nanofluid., 2013. 14 (6):969-981
    6. Breast Cancer Cell Invasion into a Three Dimensional Tumor-Stroma Microenvironment. Truong D, Puleo J, Llave A, Mouneimne G, Kamm RD, Nikkhah M. Sci. Rep., 2016. 6:34094
    7. Macrophage-secreted TNFα and TGFβ1 Influence Migration Speed and Persistence of Cancer Cells in 3D Tissue Culture via Independent Pathways. Li R, Hebert JD, Lee TA, Xing H, Boussommier-Calleja A, Hynes RO, . . . Kamm RD. Cancer Res., 2016. 77 (2):279-290
    8. *MBNL1 alternative splicing isoforms play opposing roles in cancer. Tabaglio T, Low DHP, Teo WKL, Goy PA, Cywoniuk P, Wollmann H... Guccione E. Life Science Alliance, Sept 2018 doi:10.26508/lsa.201800157

    2.6. Testing New Therapeutic Approaches

    1. Engineering a 3D microfluidic culture platform for tumor-treating field application. Pavesi A, Adriani G, Tay A, Warkiani ME, Yeap WH, Wong SC, Kamm RD. Sci. Rep., 2016. 6:26584
    2. *Assessing Therapeutic Efficacy of MEK Inhibition in a KRASG12C-Driven Mouse Model of Lung Cancer. Li S, Liu S, Deng J, Akbay EA, Hai J, Ambrogio C ... Wong KK. Clinical Cancer Research 2018 doi: 10.1158/1078-0432.CCR-17-3438
    ↑ Back to the top

    3. Immunotherapy

    1. *A 3D microfluidic model for preclinical evaluation of TCR-engineered T cells against solid tumors. Pavesi A, Tan AT, Koh S, Chia A, Colombo M, Antonecchia E, Miccolis C, Ceccarello E, Adriani G, Raimondi MT, Kamm RD, Bertoletti A. JCI Insight. 2017 Jun 15;2(12). pii: 89762. doi: 10.1172/jci.insight.89762.
    2. *Ex Vivo Profiling of PD-1 Blockade Using Organotypic Tumor Spheroids. Jenkins RW, Aref AR, Lizotte PH, Ivanova E, Stinson S, Zhou CW, ... Barbie DA. Cancer Discov. 2017 Nov 3. pii: CD-17-0833. doi: 10.1158/2159-8290.CD-17-0833.
    3. *CDK4/6 Inhibition Augments Anti-Tumor Immunity by Enhancing T Cell Activation. Deng J, Wang ES, Jenkins RW, Li S, Dries R, Yates K, ... Wong KK. Cancer Discov. 2017 Nov 3. pii: CD-17-0915. doi: 10.1158/2159-8290.CD-17-0915.
    4. Characterizing the Role of Monocytes in T Cell Cancer Immunotherapy Using a 3D Microfluidic Model. Lee SWL, Adriani G, Ceccarello E, Pavesi A, Tan AT, Bertoletti A, Kamm RD and Wong SC (2018) Front. Immunol. 9:416. doi: 10.3389/ mmu.2018.00416
    5. *Tumor innate immunity primed by specific interferon-stimulated endogenous retroviruses. Cañadas I, Thummalapalli R, Kim JW, Kitajima S, Jenkins RW, Christensen CL... Barbie DA. Nature Medicine 23 July 2018 doi.org/10.1038/s41591-018-0116-5
    6. *Molecular recalibration of PD-1+ antigen-specific T cells from blood and liver. Otano I, Escors D, Schurich A, Singh H, Robertson F, Davidson BR... Maini MK. Molecular Therapy (2018), doi: 10.1016/j.ymthe.2018.08.013.
    7. *3D microfluidic ex vivo culture of organotypic tumor spheroids to model immune checkpoint blockade. Aref AR, Campisi M, Ivanova E, Portell A, Larios D, Piel BP... Jenkins RW. Lab on a Chip, 2018, DOI: 10.1039/C8LC00322J
    ↑ Back to the top

    4. Neurobiology

    1. A high-throughput microfluidic assay to study neurite response to growth factor gradients. Kothapalli CR, van Veen E, de Valence S, Chung S, Zervantonakis IK, Gertler FB, Kamm RD. Lab Chip, 2011. 11 (3):497-507
    2. A microfluidic device to investigate axon targeting by limited numbers of purified cortical projection neuron subtypes. Tharin S, Kothapalli CR, Ozdinler PH, Pasquina L, Chung S, Varner J, . . . Macklis JD. Integr. Biol., 2012. 4 (11):1398-1405
    3. Three-dimensional extracellular matrix-mediated neural stem cell differentiation in a microfluidic device. Han S, Yang K, Shin Y, Lee JS, Kamm RD, Chung S, Cho SW. Lab Chip, 2012. 12 (13):2305-2308
    4. A 3D neurovascular microfluidic model consisting of neurons, astrocytes and cerebral endothelial cells as blood-brain barrier. Adriani G, Ma DL, Pavesi A, Kamm R, Goh ELK. Lab Chip, 2016. 17 (3):448-459
    5. 3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes. Campisi M, Shin YJ, Osaki T, Hajal C, Chiono V, Kamm RD. Biomaterials 2018 https://doi.org/10.1016/j.biomaterials.2018.07.014

    ↑ Back to the top

    5. Stem Cell Biology

    5.1. Differentiation of Embryonic Stem Cells

    1. Differentiation of embryonic stem cells into cardiomyocytes in a compliant microfluidic system. Wan CR, Chung S, Kamm RD. Ann. Biomed. Eng., 2011. 39 (6):1840-1847
    2. Simultaneous or Sequential Orthogonal Gradient Formation in a 3D Cell Culture Microfluidic Platform. Uzel SGM, Amadi OC, Pearl TM, Lee RT, So PTC, Kamm RD. Small, 2016. 12 (5):612-622

    5.2. Electrical and Mechanical Stimulation of Mesenchymal Stem Cells

    1. Controlled electromechanical cell stimulation on-a-chip. Pavesi A, Adriani G, Rasponi M, Zervantonakis IK, Fiore GB, Kamm RD. Sci. Rep., 2015. 5:11800
    ↑ Back to the top

    6. ​Mechanobiology

    6.1. Mechanical stimulation of Cardiac Fibroblasts

    1. On-chip assessment of human primary cardiac fibroblasts proliferative responses to uniaxial cyclic mechanical strain. Ugolini GS, Rasponi M, Pavesi A, Santoro R, Kamm R, Fiore GB, . . . Soncini M. Biotechnol. Bioeng., 2016. 113 (4):859-869

    6.2. Optically Excitable Motor Units

    1. Microfluidic device for the formation of optically excitable, three-dimensional, compartmentalized motor units. Uzel SGM, Platt RJ, Subramanian V, Pearl TM, Rowlands CJ, Chan V, . . . Kamm RD. Science Advances, 2016. 2 (8)
    ↑ Back to the top

    ​7. Other Models

    7.1. Environmental Assessment

    1. *Functional human 3D microvascular networks on a chip to study the procoagulant effects of ambient fine particulate matter. Li Y, Pi QM, Wang PC, Liu LJ, Han ZG, Shao Y, Zhai Y, Zuo ZY, Gong ZY, Yang X, Yang W. RSC Adv., 2017, 7, 56108–56116
    2. *Protein corona of airborne nanoscale PM2.5 induces aberrant proliferation of human lung fibroblasts based on a 3D organotypic culture. Li Y, Wang PC, Hu CL, Wang K, Chang Q, Liu LJ, Han ZG, Shao Y, Zhai Y, Zuo ZY, Gong ZY, Wu Y. Scientific Reports volume 8, Article number: 1939(2018) doi:10.1038/s41598-018-20445-7
    ↑ Back to the top

    8. Reviews

    1. Microfluidic Platforms for Studies of Angiogenesis, Cell Migration, and Cell–Cell Interactions. Chung S, Sudo R, Vickerman V, Zervantonakis IK, Kamm RD. Ann. Biomed. Eng., 2010. 38 (3):1164-1177
    2. Microfluidic devices for studying heterotypic cell-cell interactions and tissue specimen cultures under controlled microenvironments. Zervantonakis IK, Kothapalli CR, Chung S, Sudo R, Kamm RD. Biomicrofluidics, 2011. 5 (1)
    3. Microfluidic models of vascular functions. Wong KHK, Chan JM, Kamm RD, Tien J. 2012. 14:205-230
    4. Tumor cell migration in complex microenvironments. Polacheck WJ, Zervantonakis IK, Kamm RD. Cell. Mol. Life Sci., 2013. 70 (8):1335-1356
    5. Microfluidic platforms for mechanobiology. Polacheck WJ, Li R, Uzel SGM, Kamm RD. Lab Chip, 2013. 13 (12):2252-2267
    6. Creating living machines. Kamm RD, Bashir R. Ann. Biomed. Eng., 2014. 42 (2):445-459
    7. In vitro models of the metastatic cascade: from local invasion to extravasation. Bersini S, Jeon JS, Moretti M, Kamm RD. Drug Discov. Today, 2014. 19 (6):735-742
    8. Microfabrication and microfluidics for muscle tissue models. Uzel SGM, Pavesi A, Kamm RD. Progress in Biophysics and Molecular Biology, 2014. 115 (2–3):279-293
    9. Single-Cell Migration in Complex Microenvironments: Mechanics and Signaling Dynamics. Mak M, Spill F, Kamm RD, Zaman MH. J. Biomech. Eng., 2016. 138 (2):021004-021004-8
    10. Impact of the physical microenvironment on tumor progression and metastasis. Spill F, Reynolds DS, Kamm RD, Zaman MH. Curr. Opin. Biotechnol., 2016. 40:41-48
    11. Microfluidics: A New Tool for Modeling Cancer-Immune Interactions. Boussommier-Calleja A, Li R, Chen MB, Wong SC, Kamm RD. Trends in Cancer. 2 (1):6-19
    12. Microfluidic models for adoptive cell-mediated cancer immunotherapies. Adriani G, Pavesi A, Tan AT, Bertoletti A, Thiery JP, Kamm RD. Drug Discov. Today, 2016. 21 (9):1472-1478
    13. M2a macrophages induce contact-dependent dispersion of carcinoma cell aggregates. Adriani G, Bai J, Wong SC, Kamm RD, Thiery JP. Macrophage, 2016. 3:e1222

     

上一篇:高低温模组和普通模组区别 下一篇:6%鲁尔圆锥接头多功能测试仪 操作简单易学 上海理涛自动化科技有限公司
热线电话 在线询价
提示

请选择您要拨打的电话:

温馨提示

该企业已关闭在线交流功能