SynBBB血脑屏障模型芯片

SynBBB血脑屏障模型芯片

参考价: 面议

具体成交价以合同协议为准
2023-07-27 18:35:43
246
产品属性
关闭
世联博研(北京)科技有限公司

世联博研(北京)科技有限公司

初级会员4
收藏

组合推荐相似产品

产品简介

SynBBB3DѪ������ģ��оƬ��Ѫ��������֯ģ��оƬ��SynBBB3DBloodBrainBarrierModel

详细介绍

SynBBB 3DѪ������ģ��оƬ��Ѫ��������֯ģ��оƬ��SynBBB 3D Blood Brain Barrier Model,SynBBB 3D Model Kit��SynBBB 3D Model �C Assay Kits,SynBBB 3D Model Assay Kit SynBBB 3D Model Chip,SynBBB 3D Model Starter Kit

SynBBB 3DѪ������ģ��оƬ��SynBBB 3D Blood Brain Barrier Model,SynBBB 3D Model �C Assay Kits,SynBBB 3D Model Assay Kit SynBBB 3D Model Chip,SynBBB 3D Model Starter Kit

SynBBB 3D Blood Brain Barrier Model �C Real-time visualization of cellular and barrier functionality

SynVivo��SynBBB 3DѪ������ģ��ͨ��ģ�����Ѫ�����ϣ�BBB������Ƥϸ��ͨѶ������֯ϸ������֯��Ƭ���ؽ�����΢�����������յ�����Ƥϸ������������Transwell®ģ����wu��ʵ�֣�����SynBBBģ����ʹ��������������������ʵ�֡����ܱ仯���γɿ���ʹ��SynVivoϸ���迹������ͨ�������������������������仯�����в���������֯ϸ������Ƥϸ��֮����໥������SynBBB�����к����׹۲쵽�� Transwellģ�Ͳ�����ʵʱ��ʾ��Щϸ���໥���ã�������˽�BBB΢����������Ҫ��

SynBBB�ǿ���ʵ�����¹��ܵ�����BBBģ�ͣ�

׼ȷ������ѪҺ����ѧ��Ӧ��
ʵʱ���ӻ�ϸ�������Ϲ���
�������˳ɱ���ʱ��
�Ƚ����õ�Э��

BBBģ�͵�ʾ��ͼ����ǻ����ͨ������������Ѫ�ܣ���Ƥϸ���������������ǻ������ǻ��������������֯ϸ��������ϸ������ϸ������Ԫ������׽ṹʹѪ��ϸ������֯ϸ��֮����Խ���ͨѶ��

SynBBBϵͳ��һ���߶�ͨ�õ�ƽ̨�������ڵ��飺

�������ӵ��ף�ȷ���������ӵ��׵�ˮƽ��������BBB��С���պϵ��ף�claudins��occludins��
ת�˵��ף����������͹����쳣��Ѫ��������ת�˵��׵Ĺ��ܣ�����Pgp����
ҩ����͸�ԣ��������Ƽ���С���Ӵ���BBB��Ƥϸ����ʵʱ��͸�ԡ�
��֢���˽���֢��Ӧ��Ѫ�����ϵ��ڵ�DZ�ڻ��ơ�
ϸ��Ǩ�ƣ����ӻ�����������ϸ����BBB�е�ʵʱǨ�ơ�
��͸�Ա仯���������͹����쳣��Ѫ�����Ͻ��л����飬��������ʹ�л������
�񾭶��ԣ�������ѧ������������Լ���Ѫ������ϸ���Ķ������á�
������ѧ���о�����ϸ����Ѫ�����ϵ�Ӱ�졣
���������о����������Դӡ������� SynBBBģ�ͻ� TEER���ݡ� SynBBB�����н���ѡ��

SynBBB 3Dģ���׼����
�������Լ�����ʽ��������SynBBB���������all��������� ���ݸ����о����������Դ�SynBBBоƬ�ġ��������� TEER���ݡ������н���ѡ�� ����all�������������ӣ����ӣ���ͷ��ע������ ���Ź��߰����������������װ�ã�����SynBBB�������裩��ϸ���迹�����ǣ��ռ�SynBBB TEER����ֵ���裩��

�׼����ݺ�˵��

SynBBB Kits and Chips Basic BBB Assay Kit

Cat# 402001

Basic BBB Starter Kit

Cat# 402002

BBB-TEER Assay Kit

Cat# 402003

BBB-TEER Starter Kit

Cat# 402004

102005-SB Chips (3uM slit)  (10) ? ?
102015-SB Chips (3uM slit-Teer compatible) (10) ? ?
Pneumatic Primer and Adapter ? ?
Manifold (5 port) ? ?
Blunt Tip Needles 0.5�� long, 24ga (50) ? ? ? ?
Tygon Tubing 0.2�� ID x

0.6�� OD (100 ft)

? ? ? ?
1 mL Syringes (50) ? ? ? ?
Slide Clamps (25) ? ? ? ?
Impedance Analyzer ?
Electrodes (20)  ? ?

 

SynVivo used to create the first neonatal BBB model on a chip

Researchers at Temple University used the SynVivo® SynBBBTM cell-based in vitro assay platform to model the attributes and functions of the neonatal stage blood-brain barrier (BBB) [1]. The SynBBB model closely mimics the in vivo microenvironment including three-dimensional morphology, cellular interactions and flow characteristics on a microfluidic chip. This work marks the first dynamic in vitro neonatal BBB model that offers real time visualization and analysis and is suitable for studies of BBB function as well as screening of novel therapeutics.

��The work is important because studies of neonatal neuropathologies and development of appropriate therapeutics are hampered by a lack of relevant in vitro models of the neonatal blood-brain barrier,�� said Dr. Sudhir Deosarkar, the lead author of this paper.

In the SynBBB assay, which includes a tissue compartment and vascular channels placed side-by-side and separated by an engineered porous barrier, the researchers were able to co-culture neonatal rat brain endothelial cells and rat astrocytes under physiological conditions observed in vivo. The endothelial cells formed a full lumen and exhibited tight junction formation which increased under co-culture with astrocytes. The permeability of small molecules in the developed model was found to in excellent agreement with in vivo observations.

��The real-time visualization capabilities of the SynBBB co-culture platform allowed, for the first time, visualization of astrocyte end-feet and endothelial cell interactions in anin vitro model,�� said Prof. Mohammad Kiani who is the senior author of the paper. ��This is a unique capability and will help us to understand and develop therapeutics for several developmental disorders and diseases of the brain.��

The PLOS ONE paper shows that in contrast to transwell models, the SynBBB model exhibits significantly improved barrier characteristics similar to in vivo observations.

1A Novel Dynamic Neonatal Blood-Brain Barrier on a Chip. S. Deosarkar, B. Prabhakarpandian, B. Wang, J.B. Sheffield, B. Krynska, M. Kiani. PLOS ONE, 2015, DOI: 10.1371/journal.pone.0142725

The SynBBB 3D model has been validated in various BBB Assays

Mono-Culture Assays

Shear-induced endothelial cell tight junctions, which cannot be achieved in the Transwell® model, are easily achieved in the SynBBB assay using fluid perfusion. Formation of tight changes can be measured using biochemical or electrical analysis (assessing changes in electrical resistance) with the SynVivo Cell Impedance Analyzer.

Primary endothelial cells are cultured in the vascular channel under physiological fluid flow. Cells are stained for tight junction markers highlighting the increase under fluid flow compared to static conditions. The Cell Impedance Analyzer system is used to measure increases in Ohmic resistance (TEER), associated with the formation of tight junctions.

Top Left Panel: Phase Contrast imaging of brain endothelial cells cultured in the SynBBB model. Bottom Left Panel: Calcein AM and Ethidium homodimer-1 labeled brain endothelial cells indicating a highly viable population of cells in the SynBBB model. Right Panel: Plot highlighting the importance of flow on brain endothelial cells with increased TEER.

Co-Culture with Tissue Cells

Interactions between brain tissue cells and endothelial cells are readily visualized in the SynBBB assay. Transwell models do not allow real-time visualization of these cellular interactions, which are critical for understanding of the physiological environment.

Endothelial cells are cultured under flow in the vascular channel, and the tissue chamber is cultured with primary brain cells, such as astrocytes. Increases in Ohmic resistance across the barrier, measured with the Cell Impedance Analyzer, are associated with tight junction formation across the BBB. Endothelial cells co-cultured with astrocytes form significantly tighter cell junctions compared to mono-cultured endothelial cells.

Left Panel: CD-31 (green) stained endothelial cells and GFAP (red) stained astrocytes. All nucleus are stained with DAPI (blue). Right Panel: Plot highlighting increased TEER with co-culture of endothelial cells and astrocytes.

Real-Time Permeability Assays

Unlike BBB models which are arranged in top to bottom architecture (i.e., Transwell), small molecule transport can be assessed and quantified in real-time across the SynBBB system due to its side-by-side architecture.

A fluorescently-labeled drug molecule of interest is perfused through the vascular channels at physiological  flow rate. Real-time videos are acquired and analyzed to calculate the rate of permeability into the tissue chamber. Different rates of permeability is observed across the BBB due to tight junctions of endothelial cells.

Time-lapse imaging of permeability of small molecules across a tightly formed BBB.

Time-lapse imaging of permeability of small molecules across a leaky BBB.

Real-Time Tight Junction Modulation

SynBBB can be used to model inflammation responses. A pro-inflammatory compound, such as TNF-��, is added to mono-cultured endothelial cells to modulate the tight junctions, followed by a period of recovery under perfusion flow. Electrical resistance measurements provide a non-invasive method for real-time monitoring of tight junctions.

Modulation of Inflammation responses in SynBBB model. TNF-alpha induced leakiness in the BBB measured by changes in the resistance across the endothelial cells. Removal of TNF-alpha followed by media perfusion under physiological flow conditions enables recovery of the tight junction leading to increased tight junction formation. Static cells maintain a constant resistance due to lack of tight junctions.

SynBBB 3Dģ�ͨC�����׼�
��������Ʒ��10��оƬ����Ӣ���͹ܣ�25�������оߣ�50����ͷ��ͷ��50��1����ע�������� �����׼����������������װ�ã�����ϸ�����裩��ϸ���迹�����ǣ���������TEER���ã���


���ţ�402002Ʒ����SynBBB 3Dģ�������׼�������

���ţ�402004Ʒ����SynBBB 3Dģ�������׼���TEER

SynBBB 3Dģ�ͨC����Լ���
��������Ʒ��10��оƬ����Ӣ���͹ܣ�25�������оߣ�50����ͷ��ͷ��50��1����ע��������
���ţ�402001 SynBBB 3Dģ�Ͳⶨ�Լ��У��������ã�

���ţ�402003 SynBBB 3Dģ�Ͳⶨ�Լ��У�TEER���ã�

SynBBB 3Dģ�ͨCоƬ
���ţ�102005-SB SynBBB 3Dģ��оƬ���������ã�
���ţ�102015-SB SynBBB 3Dģ��оƬ��TEER���ã�

�ҹ�˾רע������ѧ�������ӡ������ҽѧ���̿��з���-10�꾭��֧��,
����������й���-Ӧ�þ���

上一篇:高低温模组和普通模组区别 下一篇:6%鲁尔圆锥接头多功能测试仪 操作简单易学 上海理涛自动化科技有限公司
热线电话 在线询价
提示

请选择您要拨打的电话:

温馨提示

该企业已关闭在线交流功能